
Datasheet

VMESCmodule

VME System Controller Module

Version 1.3.2

INICORE INC.
5600 Mowry School Road
Suite 180
Newark, CA 94560
t: 510 445 1529 f: 510 656 0995 e: info@inicore.com
www.inicore.com

C O P Y R I G H T © 2 0 0 9 - 2 0 1 5 , I N I C O R E I N C .

http://www.inicore.com/

V M E S C m o d u l e D a t a s h e e t

Tab l e o f C on te n t s

1. OVERVIEW... 8

1.1. Features.. 9

1.1. Deliverables.. 10

1.2. Functional Description.. 10
1.1.1. VME Master.. 10
1.1.2. DMA Handler... 10
 VME write operation .. 11
 VME Read operation ... 11
1.1.3. VME Slave.. 12
 VME Slave Window ... 12
 Example ... 14
 Enhanced Address Window Decoding ... 15
1.1.4. VME Bus Requester.. 15
1.1.5. VME System Controller... 15
 Bus arbiter ... 15
 Interrupt daisy-chain driver ... 16
1.1.6. Utility Functions... 16
 Bus timer ... 16
 System Clock Driver .. 16
 System Reset Driver ... 16
 System Failure Diagnostics .. 17
 First Slot Detector ... 18
1.1.7. Interrupt Handling.. 18
 VME Bus Interrupter .. 18
 VME Bus Interrupt Handler ... 19
 Interrupt Controller .. 21
1.1.8. Control and Status Registers.. 21
1.1.9. Mailbox Registers.. 22
1.1.10. Semaphores.. 22
1.1.11. Registers... 23
 Memory Mapping .. 23
 Endian Selection ... 24

Copyright © 2009-2015, Inicore Inc. Indexes - Page II

V M E S C m o d u l e D a t a s h e e t

1.1.12. Reset Logic... 25
1.1.13. System Clock.. 25

2. SIGNAL DESCRIPTION... 26

2.1. Global Signals.. 26

2.2. VME Bus Signals.. 26

2.3. VMEbus signals external buffering example.. 30

2.4. User Side Interfaces... 31
2.4.1. Special purpose User side Signals... 31
2.4.2. Local Bus Master Port... 32
 Local Bus Master Port write cycle ... 34
 Local bus Master Port read cycle .. 34
 Local bus Master Port read-Modify-Write Cycle ... 35
2.4.3. Local Bus Slave Port... 36
 Local Bus Slave Port CSR Write Cycle ... 38
 Local Bus Slave Port CSR Read Cycle .. 38
2.4.4. VME Access Cycles.. 39
 Local Bus Slave Port VME Read Cycle .. 39
 Local Bus Slave Port VME Read Cycle with Bus Error .. 40
 Local Bus Slave Port VME Read-Modify-Write Cycle .. 41
 Auto-DTACK .. 42

3. CORE CONFIGURATION... 43

3.1. Rescinding DTACK.. 44

4. PROGRAMMERS GUIDE... 45

4.1. Internal CSR Memory Space... 45

4.2. Description of Registers... 48
4.2.1. Device Control Register: DEV_CTRL... 48
4.2.2. Device Version: DEV_VER... 48
4.2.3. System Controller: SYS_CTRL... 48
4.2.4. VME Master Controller: VME_MSTR... 50
4.2.5. Slave Access Decoding (1-8): SVL_ACC_DECn... 50
4.2.6. Slave Access Address Decoder Compare Register (1-8): SLV_ACC_CMPn......................53

Copyright © 2009-2015, Inicore Inc. Indexes - Page III

V M E S C m o d u l e D a t a s h e e t

4.2.7. Slave Access Address Decoder Mask Register (1-8): SLV_ACC_MSKn............................54
4.2.8. DMA Status Register: DMA_STAT.. 54
4.2.9. DMA Command Register: DMA_CMD.. 55
4.2.10. DMA Local Address Register: DMA_LADDR.. 56
4.2.11. DMA VME Address Register: DMA_VADDR.. 57
4.2.12. Mailbox Registers (1-4): MAILBOXn... 57
4.2.13. Semaphore Registers (0-3): SEMAPHORE... 57
4.2.14. VME Interrupter Map: VME_INT_MAP... 58
4.2.15. VME Interrupter STATUS/ID: VME_INT_STAT... 59
4.2.16. VME Interrupter STATUS/ID: VME_INT_STAT_SW...59
4.2.17. VME Interrupter: VME_INT... 60
4.2.18. VME IRQn Status/ID: VME_IRQn_STAT.. 60
4.2.19. VME Interrupt Handler Command: VME_INT_CMD..61
4.2.20. VME Interrupt Status Register: VINT_STATUS.. 62
4.2.21. VME Interrupt Enable Register: VINT_EBL.. 63
4.2.22. Interrupt Status Register: INT_STATUS... 63
4.2.23. Interrupt Enable Register: INT_EBL... 64
4.2.24. Function n Address Decoder Compare (ADER) Register..65
4.2.25. User-Defined Bit Set Register: UDBIT_SET... 68
4.2.26. User-Defined Bit Clear Register: UBIT_CLEAR... 68
4.2.27. CRAM Owner register:CRAM_OWNER... 69
4.2.28. CSR Bit Clear Register: BIT_CLEAR... 69
4.2.29. CSR Bit Set Register: BIT_SET.. 71
4.2.30. CSR Base Register: CRBAR.. 72

Copyright © 2009-2015, Inicore Inc. Indexes - Page IV

V M E S C m o d u l e D a t a s h e e t

F i gu r e In de x

Figure 1.1: VME System Controller Block Diagram.. 8
Figure 1.2: VME Slave Windows.. 12
Figure 1.3: VME Slave Address Space Decoding.. 13
Figure 1.4: VME Slave Address Calculation... 14
Figure 1.5: Power Monitor Power Failure Timing.. 17
Figure 1.6: Interrupt Handler Flow Chart.. 20
Figure 1.7: CR/CSR Memory Mapping... 23
Figure 2.1: External VME transceiver connectivity... 30
Figure 2.2: User write cycle with different wait-states... 34
Figure 2.3: User read cycle with different wait-states... 34
Figure 2.4: User read-modify-write cycle.. 35
Figure 2.5: User read-only cycle... 36
Figure 2.6: Local bus slave port CSR write timing.. 38
Figure 2.7: Local bus slave port CSR read timing.. 38
Figure 2.8: Coupled local bus VME read cycle... 39
Figure 2.9: Coupled local bus VME read cycle with bus error..40
Figure 2.10: Coupled local bus VME read-modify-write cycle..41
Figure 2.11: Auto-DTACK compatibility mode .. 42

Copyright © 2009-2015, Inicore Inc. Indexes - Page V

V M E S C m o d u l e D a t a s h e e t

Do c um e n t H is t o r y
The following table gives an overview of the document history and can help in the determination if
the latest version of this document has been used.

Version Date Comment
1.0.0 10/8/10 Initial release
1.1.0 10/19/10 - Rearranged the interrupt vector to have the different interrupt flags in

 prioritized order
- Added automatic interrupt status handler
- Added DMA error interrupt
- Modified interrupter implementation to support software and user side
 hardware interrupts

1.1.1 11/24/10 - Corrected lbus_slv_addr size
- Corrected description of IS_VBERR generation
- Added time-out definition to VMEbus arbiter
- Refined description of ACFAIL_EBL register
- Replaced VBB with VMESCmodule

1.2.0 12/6/10 - Added RMW lock interface on user side
- Added master direct write feature (coupled transfer from local bus to
 VME bus) supporting D08, D16, and D32 mode for read, write, and read-
 modify-write
- Corrected mnemonic for D08 data type
- Corrected lbus_slv address width

1.2.1 4/8/11 - Figure 4: user side memory address is 31..0 and not 32..0
- Corrected DEV_CTRL VME bus address.
- Modified byte endian decoding table on page 22
- Corrected bit mapping for D16 cycle of VME_IRQn_STAT register

1.2.2 2/15/12 - Corrected A32 code in SLVW_AM_AS table
- Corrected slave window size and offset in example
- SYSCLK driver is only an output. Updated driver diagram to show this
- Changed polarity of SYSCON_DIR description
- Fixed slave window naming inconsistencies
- Clarified description for IS_IRQn and IE_IRQn register bits

1.2.3 4/6/12 - Updated endian selection table
- Fixed description for IE_IRQx interrupt enables

1.2.4 4/8/13 - Corrected description for DMA handler DMA_LADDR and DMA_VADDR
 registers

Copyright © 2009-2015, Inicore Inc. Indexes - Page VI

V M E S C m o d u l e D a t a s h e e t

Version Date Comment
1.3.0 7/2/14 - Changed location of local User_CSR registers to avoid location conflict

 with VME64x reserved memory space
- Added CRAM_OWNER functionality
- Added user-defined bit set/clear register
- Added module-enable flag in bit-set/clear register
- Added CR_ADER register and updated VSLW_xx registers to support
 VME64x compliant ADER operation
- Added top-level generics to support backwards compatibility modes for the
 address map switch and the new ADER operation. This feature will be
 removed in a future release!
- Added device version register DEV_VER and top-level generic
 G_USER_VERSION
- Updated SLVW_OFFSET to 16-bit to match implementation
- Added advanced interrupter to support D08(O), D16 and D32 interrupt
 vectors. This feature can be selected using the G_INTERRUPTER
 generic.
- Increased the number of slave windows to 8
- Added new slave window decode options

1.3.1 04/16/15 - Introduced auto-dtack backwards compatibility mode
- Changed location of auto-dtack enable bit in slave access decoder
- Refined bus_slv_byte_valid description

1.3.2 10/26/14 - Local bus address for DMA transfers is 32-bit and not 24-bit.

Copyright © 2009-2015, Inicore Inc. Indexes - Page VII

V M E S C m o d u l e D a t a s h e e t

1 . Ov e r v i e w

The VMESCmodule is a VME System Controller core designed for FPGA and ASIC integrations.
The core contains VME Slave and Master functions as well as System Controller features such
as bus timer, arbiter, IACK daisy-chain driver, system clock driver, and provisioning for CR/CSR.
The core contains all functionality needed for a VME system controller design. It can as well be
used in situations where only VME Master or VME Slave functions are needed.

Copyright © 2009-2015, Inicore Inc. Overview - Page 8

Figure 1.1: VME System Controller Block Diagram

V M E S C m o d u l e D a t a s h e e t

1.1. Features

System Controller
• Bus Arbiter

• Fixed priority
• Round robin

• Bus Timer
• Programmable 1-255 µs timeout

• SYSCLOCK* driver
• SYSFAIL* driver
• First Slot Detector
• IACK daisy-chain driver

Master Interface
• Coupled transfers for single data cycles
• Addressing modes: A16, A24, A32
• Data types: D08(EO), D16, D32
• Access modes: Read, write, read-

modify-write
• Auto-dtack backwards compatibility

mode
DMA Engine

• Used to transfer data blocks
• Addressing modes: A16, A24, A32
• Data modes: D08(EO), D16, D32, D32-

BLT, D64-MBLT
• Supports data read-ahead and posted

write to increase throughout
• Selectable constant local bus address

for DMA transfers to/from FIFOs
• Address translation

Slave Interface
• Addressing modes: A16, A24, A32
• Data types: D08(EO), D16, D32, D32-

BLT, D64-MBLT

• Access modes: Read, write, read-
modify-write

• Selectable rescinding DTACK
• Provides big-endian to little-endian

conversion option
• Supports up to 8 slave windows
• Auto-dtack backwards compatibility

mode
Interrupt Handler

• Automatically fetches STATUS/ID vector
from pending VME interrupt requests

• Supports D08(O), D16, and D32
Interrupter

• D08(O), D16 and D32
• Software interrupt request (ROAK)
• User interrupt request (RORA)
• Programmable interrupt level and type

Bus Requester
• RWD (release when done) and ROR

(release on request) arbitration schemes
• FAIR requester
• Supports early withdrawal of bus

request
Local Bus Interface

• Fully synchronous bus interface for user
logic

• User selectable wait-states
• Optional big-endian to little-endian

conversion
CR/CSR

• Contains address decoding for CR/CSR
space

• Local CSR configuration registers

Copyright © 2009-2015, Inicore Inc. Overview - Page 9

V M E S C m o d u l e D a t a s h e e t

1.2. Deliverables

• RTL code
• Self-verifying system-level testbench
• Simulation and synthesis scripts
• Synthesis information
• User guide

1.3. Functional Description

1.3.1. VME Master

Single cycle VME transfers originating from the local bus can directly generate single VMEbus
data transfer cycles. These are coupled transactions.
The VME master supports following type of data transfer modes:

• Address mode: A16, A24, A32
• Data types: D08(EO), D16, D32
• Data modes: Read, write, read-modify-write

1.3.2. DMA Handler

The DMA handler is used when more than just a few data cycles are needed to transfer data
between the local bus and the VME bus.
Control registers reside in the internal CSR. They can be either programmed from the local bus or
from the VME bus. Following options are available:

• VME start address
• Local bus start address
• Address mode: A16, A24, A32
• Data types: D08(EO), D16, D32, D32-BLT, D64-MBLT
• Transfer size in beats
• Selectable read-ahead and posted-write
• Transfer direction (VME read or VME write)
• Selectable constant local bus address for DMA transfers to/from local FIFOs
• Address translation

Copyright © 2009-2015, Inicore Inc. Overview - Page 10

V M E S C m o d u l e D a t a s h e e t

VME Write Operat ion
1) CPU configures the DMA transfer using the DMA_LADDR, DMA_VADDR, and

DMA_CMD registers.
• DMA_LADDR defines the source address of the local bus
• DMA_VADDR defines the destination address of the VME bus
• DMA_CMD configures the data transfer such as data type, length of transfer, address

modifier code
2) VME Master requests VME bus access. Once granted, the Master transfers data from the

local bus to external VME slave.
3) DMA done interrupt flag IS_DMADONE is asserted upon successful completion of data

transfer, IS_DMAERR is asserted if an error is detected.

VME Read Operat ion
1) CPU configures the DMA transfer using the DMA_LADDR, DMA_VADDR, and

DMA_CMD registers.
• DMA_VADDR defines the source address of the VME bus.
• DMA_LADDR defines the destination address of the local bus.
• DMA_CMD configures the data transfer such as data type, length of transfer, address

modifier code.
2) VME Master requests VME bus access. Once granted, the Master transfers data from the

external VME slave to the local bus.
3) The DMA done interrupt flag IS_DMADONE is asserted upon successful completion of

data transfer, IS_DMAERR is asserted if an error is detected.

Example:
To read a data block from VME address 0x40000100 ~ 0x400001FF and save it in the local
memory at location 0x1000-0x101FF, the DMA registers are set as follows:

DMA_VADDR = 0x40000100
DMA_LADDR = 0x1000

Once the DMA address register is set, the transfer is started by setting the DMA command
register:

DMAC_RAE = 0 // disable read ahead
DMAC_PW = 0 // disable posted write
DMAC_WIDTH = 4 // this is D32-BLT access
DMAC_SIZE = 0x3F // need 64 beats/cycles to transfer 256 bytes
DMAC_AM = 0x0F // use A32 supervisory block
DMAC_RWN = 0 // perform VME read operation
DMAC_ABORT = 0 // no abort
DMAC_REQ = 1 // start transfer

Copyright © 2009-2015, Inicore Inc. Overview - Page 11

V M E S C m o d u l e D a t a s h e e t

1.3.3. VME Slave

Using the VME slave, other VME masters can access the local configuration registers as well as
devices and memories connected to the user-side interface. To access the user-side interface,
four separate memory windows are available that map a section of the local user-side memory
into the VME address space.
The VME slave supports following type of data transfer modes:

• Addressing modes: A16, A24, A32
• Data types: D08(EO), D16, D32, D32-BLT, D64-MBLT
• Access modes: Read, write, read-modify-write

VME Slave Window
The VMESCmodule maps eight different VME memory windows into the local user-side memory
space:

To detect if a VME slave access matches one of these windows, following tasks are performed:
1) The VME address is masked with the VME Address Mask Register (SLVWn_ADEM) and

then compared with the expected CSR ADER compare bits (CSR_ADERn.C)
2) The VME address modifier is compared with the preprogrammed value

(CSR_ADERn.AM)
3) The slave address window needs to be enabled (SLVWn_EBL) and the module_enable

bit set in the CSR BIT-SET/CLEAR register.

Copyright © 2009-2015, Inicore Inc. Overview - Page 12

Figure 1.2: VME Slave Windows

V M E S C m o d u l e D a t a s h e e t

For gate-count optimizations, the 8 slave windows can be configured using top-level generics:

Generic Name Description
G_VME_SLVWn_AV
n=1..8

Slave window available
For gate-count optimization, each slave access window can individually
disabled.

0: Slave window is not available
1: Slave window is available

G_VME_SLVWn_SIZE
n=1..8

Slave window size
The window size is defined as 256 x 2G_VME_SLVWn_SIZE :

0: 256 bytes
1: 512 bytes
2: 1k bytes
…
15: 8M bytes
Others: not valid

This decoding procedure is shown in following figure:

Copyright © 2009-2015, Inicore Inc. Overview - Page 13

Figure 1.3: VME Slave Address Space Decoding

8 7 0

VME Address

31

&
8

SLVWn_ADEM

31

8

SCR_ADER.C

31

=

0

VME Address Modifier

5

CSR_ADER.AM
=

SLVWn_EBL

&
Address
Window
Match

Control Register
VME Bus

module_enable

V M E S C m o d u l e D a t a s h e e t

Once a success full match is determined, the local user side memory address is calculated based
on the VME address and the address offset (SLVWn_OFFSET) as shown in following figure:

The lower 8 address bits are left as they are. This leads to a minimal window size of 256 bytes.
Depending on the address mask register, the window size may be bigger, but it is always a
multiple of 256 bytes and it is always aligned on a 256 byte boundary.
The slave window decoder becomes active once the module-enable flag in the bit-set register is
set.

Example
This example shows how the VME address range 0x10001000-0x100013FF is mapped onto the
local memory locations 0x1400-0x17FF using a window size of 1k byte. Only single-cycle A32
data access is supported.
The local memory address is calculated as follows:

user_addr[7:0] = vme_addr[7:0]
user_addr[23:8] = vme_addr[23:8] + VSLVM_OFFSET[15:0]

This is the configuration to properly detect access to the slave window 1 and perform the neces-
sary address translation::

SLVW1_OFFSET = 0x04 // address offset

SLVW1_ADM = 0xFFFFFC // mask register: bits 1:0 are don't care
CSR_ADER1.C = 0x100010 // address decoder compare register
CSR_ADER1.AM = 0x09 // am register for A32 non-privileged data
SLVW1_EBL = 1 // enable slave window

Copyright © 2009-2015, Inicore Inc. Overview - Page 14

Figure 1.4: VME Slave Address Calculation

31 8 7 0

User Side Memory Address

8 7 0

VME Address

31

+

15 0

SLVWn_OFFSET

V M E S C m o d u l e D a t a s h e e t

Enhanced Address Window Decoding
The Address Decoder compaRe (ADER) register defined in the VME64x standard allows one
Address Modifier (AM) code per window. If a memory window has to support single-cycle and
block transfer modes, two slave windows are necessary.
The VMESCmodule provides additional decoder flags that allow a more flexible use of the slave
windows while still supporting the VME64X ADER features.
With the slave access decoding register (SLV_ACC_DECn), each slave window supports
following additional access modes:

• Data access overwrite1

• Program access overwrite1

• Non-privileged access overwrite
• Supervisory access overwrite
• BLT access overwrite
• MBLT access overwrite

Example:
Assuming that the slave window 2 is configured for A24 non-privileged program access (AM code
0x3A) and the BLT access overwrite flag is set, then this slave window will support A24 non-priv -
ileged block transfer (AM code 0x3B) too.

1.3.4. VME Bus Requester

The Bus Requester module is used by the VME Master block and the Interrupt Handler to request
bus access. It can be configured using the internal Configuration and Status Register (CSR).

• Supports RWD (release when done) and ROR (release on request) arbitration schemes
• FAIR requester
• Supports early withdrawal of bus request
• Configurable bus request level

1.3.5. VME System Controller

The VME core can become the system controller when it is located in slot 01 of a VME system.

Bus Arbiter
The bus arbiter can be configured to either support fixed-priority or round-robin arbitration:

– Fixed priority arbiter
In this mode, bus requests are served from level 3 through 0. The highest priority

1 These flags enable single-cycle transfers.

Copyright © 2009-2015, Inicore Inc. Overview - Page 15

V M E S C m o d u l e D a t a s h e e t

request is served first.
If a bus request with a higher priority is detected, the bus arbiter tries to clear the bus by
asserting BCLR*.

– Round robin arbiter
In this mode, all levels are served in a round robin mode. Scanning from levels 3 to 0.
Only one grant is issue per level.

If the requester doesn't assert BBSY* within 16 us, the arbiter withdraws the grant and asserts
the IS_VARBITER interrupt status bit.

Interrupt Daisy-chain Driver
As part of the system controller, the VMESCmodule contains an interrupt daisy-chain driver.

1.3.6. Utility Functions

Bus Timer
A programmable timer measures the time (1 µs – 255 µs) between DS* assertion and the
DTACK* generation. The timer is started when DS* is asserted and cleared with DTACK* or
BERR*. If the timer exceeds the configured time BERRTIMER, BERR* is asserted to abort the
currently pending transaction.

System Clock Driver
The system clock driver generates a continuous 16 MHz signal SYSCLOCK. This signal is always
available, even during reset. The system clock driver is disabled of the VMESCmodule is not a
system controller.

System Reset Driver
The system reset driver is active when the VMESCmodule is a system controller.
SYSRESET* is driven

– under software control using the SYS_CTRL.SRESET register
– when the hardware reset RESET_N is active
– when ACFAIL* is asserted as shown in the figure 1.5. This feature can be enabled by

using the SYS_CTRL.ACFAIL_EBL configuration register.

Copyright © 2009-2015, Inicore Inc. Overview - Page 16

V M E S C m o d u l e D a t a s h e e t

See paragraph 1.3.12 Reset Logic (page 25) for more information on reset generation.

System Failure Diagnostics
In VME systems SYSFAIL* is used as indicator for ongoing system failure analysis or as an indic -
ator of a system failure.
SYSFAIL* can be set and cleared under software control using the SDES bit of the BIT_SET and
BIT_CLEAR registers. The user side signal user_sysfail_n is provided for diagnostics. Usually, it
drives a status LED to help a visual inspection to determine which board has failed.
A top-level generic is available to set the SYSFAIL* behavior at power-up or system reset:

Generic Name Description
G_SYSFAIL_MODE SYSFAIL* Mode Selection

Upon hardware reset or a system reset, the core can assert SYSFAIL*
0: Do not assert SYSFAIL* upon reset
1: Assert SYSFAIL* upon reset

If SYSFAIL* is driven at power-up, it has to be cleared by using the BIT_CLEAR.SDES bit.
SYSFAIL* is driven independently of the system controller mode.

Copyright © 2009-2015, Inicore Inc. Overview - Page 17

Figure 1.5: Power Monitor Power Failure Timing

V M E S C m o d u l e D a t a s h e e t

First Slot Detector
The first slot detector logic determines if the board is located in slot 01 of the VME system. This
functionality is enabled by setting the external pin VAUTOCFG to 1. The first slot detection works
as follows:

– 40ms after reset, the first slot detector evaluates the level of VBGI_N[3] as defined in
VME Auto System Controller operation. If a low value is sampled, the board becomes a
system controller.

– Using the SYSCTRL_SET command register, the host processor can force a board to
become System Controller.

If the automatic first slot detector logic is disabled (VAUTOCFG = 0), the VME core becomes
system controller when VCFG_SYSCON is 1 or when set using the SYSCTRL_SET register.

1.3.7. Interrupt Handling

VME Bus Interrupter
The VME Bus Interrupter returns the local STATUS/ID vector VINT_STAT during a VME IACK
cycle when the interrupt level matches a pending request. There are two possible interrupt
request sources:

• Software interrupt
A software interrupt request is created by setting the VINT_SWREQ bit. This will cause a
VME interrupt on the level defined by VINT_SWIRQ.
The software interrupt is automatically acknowledged during a VME IACK cycle (ROAK).

• User interrupt
By asserting the input user_vint_req, a VME interrupt is generated. The level is defined
by VINT_UIRQ.
To acknowledge the user interrupt, the interrupt service routine needs first to acknow -
ledge the external interrupt source before acknowledging the VIS_UIRQ flag (RORA).

The interrupter can either operate as a simple or an advanced interrupter. The mode can be
selected using the top-level generic G_INTERRUPTER.

• Simple Interrupter: G_INTERRUPTER = 0
This is a D08(O) interrupter where bit 0 of the interrupt vector identifies the interrupt
source (0: software interrupt, 1: user interrupt). The other bits of the interrupt vector are
set according to the VINT_STAT register.

• Advanced Interrupter: G_INTERRUPTER = 1
The advanced interrupter can be configured to generate D08(O), D16 or D32 interrupt
vectors using the VINT_TYPE register. Each interrupt source has its own 32-bit
STATUS/ID register (user interrupts: VINT_STAT, software interrupts: VINT_STAT_SW).

Copyright © 2009-2015, Inicore Inc. Overview - Page 18

V M E S C m o d u l e D a t a s h e e t

The VME interrupt request is only generated when the respective interrupt source is enabled by
setting its VINT_EBL flag to one.
During the VME interrupt service routine, the VME interrupt handler performing the IACK cycle
accesses the VME interrupt status register VINT_STATUS to determine the interrupter source
and acknowledge it.
If both a software interrupt and a user interrupt are pending on the same level, then the software
interrupt will be acknowledged first.

VME Bus Interrupt Handler
The VME Interrupt Handler can autonomously fetch the STATUS/ID vector on all seven VME
interrupt levels. Only interrupt levels are served that have their respective IE_IRQ n flag set. The
interrupt request with the highest priority is served first.
If a VME IRQ[n]* is pending, the local interrupt request enable IE_IRQ n is set, and and the local
interrupt status bit IS_IRQn is not set, then the Interrupt Handler will fetch the STATUS/ID vector
by issuing an IACK cycle using the requested priority level.
In order for the Interrupt Handler to access the VME bus, he first has to request bus ownership.
He does so using the bus master request level set in the VMSTREQ register. The Interrupt
Handler has a higher priority to access the VME bus than the DMA engine. If a DMA operation is
already in progress, the Interrupt Handler has to wait until the end of this operation. If the Bus
Requester is programmed for release when done operation, then the Interrupt Handler has to
request bus ownership again, otherwise with release when done, the handler can directly execute
the IACK cycle. The STATUS/ID vector fetched will be stored in the respective VME_IRQ n_STAT
register. Upon completion of this cycle, the IS_IRQn bit is set.
Once the user application has read the STATUS/ID from VME_IRQn_STAT, it has to acknowledge
this interrupt by writing a one to the IS_IRQn flag. If a new VME IRQ[7..1]* interrupt request
happens while the local interrupt status bit is still set, the new request will not be served. This
guarantees that the user application will not miss a STATUS/ID vector. Once the IRQ n interrupt is
cleared by setting the IS_IRQn bit, the Interrupt Handler can serve an other VME interrupt at the
same level.
If a bus error BERR* is detected during a VME cycle, VME_IRQn_ERR and IS_IRQn bits are set.
This means that VME_IRQn_STAT is only valid if the respective VME_IRQn_ERR bit is not set.
Following flowchart shows the process of serving an VME interrupt request and how the resulting
local interrupt request is processed by the user application.

Copyright © 2009-2015, Inicore Inc. Overview - Page 19

V M E S C m o d u l e D a t a s h e e t

Copyright © 2009-2015, Inicore Inc. Overview - Page 20

Figure 1.6: Interrupt Handler Flow Chart

V M E S C m o d u l e D a t a s h e e t

Interrupt Controller
Several interrupts are generated based upon different local interrupt events. Each interrupt
source can be individually enabled.
Interrupt sources:

– Mailbox 0-3 write access
– DMA cycle done
– DMA error
– VME bus error
– VME bus timer expired
– AC Fail
– System Fail
– VME software interrupt
– VME IRQ[7:1] interrupt

1.3.8. Control And Status Registers

All control and status registers can be accessed either by an external VME master or by the local
CPU.

– Access via VME
All control and status registers are mapped into the CR/CSR space as defined the the
VME and VME64x specification.

– Access via local bus
All control and status registers are directly accessible using the User CSR Port.

The VMESCmodule contains an internal arbiter to protect against data corruption due to concur -
rent CSR access.

Copyright © 2009-2015, Inicore Inc. Overview - Page 21

V M E S C m o d u l e D a t a s h e e t

1.3.9. Mailbox Registers

Mailbox registers are used as a communication channel between the VME bus and the local
CPU. When an external VME master writes to the user-side memory, he can set a specific code
in the mailbox. A write operation will generate an interrupt to the CPU to indicate that new data is
available. Mailboxes can be used as flow control mechanism.
4 separate mailbox registers are available to provide a communication path between the VME
bus and the local bus, or vice-versa.

– Read and write access is provided from VME bus and local bus
– Writing to the mailbox register will set the respective irq_mbox[n] interrupt source. If the

respective interrupt is enabled, a local bus interrupt is generated.

1.3.10. Semaphores

The System Controller has 4 semaphore registers. They can be used as access control to
common resources such as VME slave memory window.
Each semaphore is 8-bits. Bit 7 is the semaphore bit and the other 7 bits are used as a tag. In
order to have semaphores working properly, the system setup needs to guarantee that all tags
are unique (eg, not two masters use the same tag!).
Operation:

1) Write new semaphore tag to semaphore register and set bit 7
2) Read back semaphore. If read value matches the requested semaphore tag, the sema -

phore is granted. If semaphore is not granted, restart at 1)
3) Normal operation
4) Once the semaphore is not needed anymore, write to semaphore with bit 7 cleared.

The semaphore bit (bit 7) is used as access control. When set, the semaphore is protected from
updates. To clear a semaphore, write to it with bit 7 set to zero. Only the port that requested the
semaphore my clear it! E.g., if the VME port set the semaphore, only the VME port can clear the
semaphore, if the local CPU set the semaphore, only the local CPU may clear it.

Copyright © 2009-2015, Inicore Inc. Overview - Page 22

V M E S C m o d u l e D a t a s h e e t

1.3.11. Registers

All System Controller's internal control and status registers are accessible from the VME bus and
the user-side bus. The unused 510kB of CSR space is available on the user-side as User
CR/CSR.

Memory Mapping
The memory mapping is shown in following figure:

The initial CR/CSR BAR address is assigned upon power-up according to the geographic
address board location. This can be later changed by the system software.
Access to the CSR space from the VME bus uses the A24 CR/CSR AM code.

Copyright © 2009-2015, Inicore Inc. Overview - Page 23

Figure 1.7: CR/CSR Memory Mapping

CSR

Internal
control and status

registers

User side
CR/CSR

0x00000 + CR/CSR BAR

0x7FFFF + CR/CSR BAR

1 kbyte

1 kbyte

510 kbyte

VME Address

0x0FFF

Local Bus Address

0x0000

512 kbyte VME
CR/CSR area

0x7F800 + CR/CSR BAR

V M E S C m o d u l e D a t a s h e e t

Endian Select ion
All internal registers are 32-bit wide and represent data in little endian format.

– The VMESCmodule automatically changes the data format between the VME big-endian
and the registers little-endian format.

– Using the LENDIAN configuration bit, the user can select the endian format of the user
side bus interface.

The behavior of the LENDIAN configuration is shown below:
– LENDIAN = 0: Local bus is big endian
– LENDIAN = 1: Local bus is little endian

Type

Ad
dr

es
s VME

DS
1*

DS
0*

A0
1

LW
O

R
D

*

LE
N

DI
A

N VME Bus User Side Bus
[31:24] [23:16] [15:8] [7:0] [31:24] [23:16] [15:8] [7:0]

Word 0 0 0 0 0
Half-
word

2
0

0 0 1 1
0 0 0 1

Byte 3
2
1
0

1 0 1 1
0 1 1 1
1 0 0 1
0 1 0 1

0 B(0) B(1) B(2) B(3) B(0) B(1) B(2) B(3)
B(2) B(3) B(2) B(3)
B(0) B(1) B(0) B(1)

B(3) B(3)
B(2) B(2)

B(1) B(1)
B(0) B(0)

Word 0 0 0 0 0
Half-
word

2
0

0 0 1 1
0 0 0 1

Byte 3
2
1
0

1 0 1 1
0 1 1 1
1 0 0 1
0 1 0 1

1 B(0) B(1) B(2) B(3) B(3) B(2) B(1) B(0)
B(2) B(3) B(3) B(2)
B(0) B(1) B(1) B(0)

B(3) B(3)
B(2) B(2)

B(1) B(1)
B(0) B(0)

Note:
– B(0) indicates VME Byte(0), B(1) is Byte(1), etc

– Address is a byte address (31:0).

Copyright © 2009-2015, Inicore Inc. Overview - Page 24

V M E S C m o d u l e D a t a s h e e t

1.3.12. Reset Logic

Several different sources can reset the VME System Controller core:
– RESET_N: Local hardware reset
– VSYSRSETI_N: VME system reset input
– VACFAILI_N: AC failure detection input
– SYS_CTRL.SRESET register: VME system reset register
– SYS_CTRL.LRESET register: User side reset
– BIT_SET/CLR.LRSTS register: Local board reset

Depending on which reset source is used, different parts of system are affected:

Reset Source VMESCmodule user_reset_n VSYSRESETO_N2

RESET_N performed asserted asserted
VSYSRESETI_N performed asserted –
VACFAILI_N performed asserted asserted, when enabled with

SYS_CTRL.ACFAIL_EBL
SRESET – – asserted for 200ms
LRESET – asserted for 200ms –
LRSTS – asserted/released –

1.3.13. System Clock

The VMESCmodule is clocked with the 64 MHz system clock CLK_SYS. No other clocks are
needed.

2 SYSRESETO_N is only driven when the VMESCmodule is a system controller.

Copyright © 2009-2015, Inicore Inc. Overview - Page 25

V M E S C m o d u l e D a t a s h e e t

2 . S i gn a l D e sc r i p t i o n

This chapter describes all interface signals of the VMESCmodule.

2.1. Global Signals

Pin Name Direction Description
CLK_SYS in System clock, 64 MHz
RESET_N in Reset input, asynchronous active low

2.2. VME Bus Signals

Pin Name Direction Description
VA_IN[31:1] in VME address bus, input
VA_OUT[31:1] out VME address bus, output
VA_INT_DRV_N out Internal VME address bus drive enable

0: Core drives output
1: Core doesn't drive output

VA_DIR out VME address bus transceiver direction
0: VME bus is driving signals (from VME bus)
1: VMESCmodule is driving signals (to VME bus)

VACFAILI_N in VME ACFAIL* indicator input
VAM_IN[5:0] in VME address modifier code, input
VAM_OUT[5:0] out VME address modifier code, output
VAM_INT_DRV_N out Internal VME address modifier code drive enable

0: Core drives output
1: Core doesn't drive output

VAM_DIR out VME address modifies code transceiver direction
0: VME bus is driving signals (from VME bus)
1: VMESCmodule is driving signals (to VME bus)

VAS_N_IN in VME address strobe, input
VAS_N_OUT out VME address strobe, output
VAS_N_INT_DRV_N out Internal VME address strobe drive enable

0: Core drives output
1: Core doesn't drive output

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 26

V M E S C m o d u l e D a t a s h e e t

Pin Name Direction Description
VAS_DIR out VME address strobe transceiver direction

0: VME bus is driving signals (from VME bus)
1: VMESCmodule is driving signals (to VME bus)

VBBSYI_N in VME bus busy input
VBBSYO out VME bus busy output
VBCLR_N_IN in VME bus clear, input
VBCLR_N_OUT out VME bus clear, output
VBCLR_N_INT_DRV_N out Internal VME bus clear drive enable

0: Core drives output
1: Core doesn't drive output

VBERRI_N in VME bus error input
VBERRO out VME bus error output
VBGI_N[3:0] in VME bus grant input
VBGO_N[3:0] out VME bus grant output
VBRI_N[3:0] in VME bus request input
VBRO[3:0] out VME bus request output
VD_IN[31:0] in VME data bus, input
VD_OUT[31:0] out VME data bus, output
VD_INT_DRV_N out Internal VME data bus drive enable

0: Core drives output
1: Core doesn't drive output

VD_DIR out VME data bus transceiver direction
0: VME bus is driving signals (from VME bus)
1: VMESCmodule is driving signals (to VME bus)

VDRV_N out Global VME transceiver drive enable
0: Transceiver driver enabled
1: Transceiver driver disabled

VDS_N_IN[1:0] in VME data strobe, input
VDS_N_OUT[1:0] out VME data strobe, output
VDS_N_INT_DRV_N out Internal VME data strobe drive enable

0: Core drives output
1: Core doesn't drive output

VDS_DIR out VME data strobe transceiver direction
0: VME bus is driving signals (from VME bus)
1: VMESCmodule is driving signals (to VME bus)

VDTACK_N_IN in VME data transfer acknowledge, input
VDTACK_N_OUT out VME data transfer acknowledge, output
VDTACK_N_INT_DRV_N out Internal VME data transfer acknowledge, drive enable

0: Core drives output
1: Core doesn't drive output

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 27

V M E S C m o d u l e D a t a s h e e t

Pin Name Direction Description
VDTACK_DIR out VME DTACK* transceiver direction

0: VME bus is driving VDTACK_N (from VME bus)
1: VMESCmodule is driving DTACK* (to VME bus)

VDTACK_DRV_N out VME DTACK* transceiver drive enable
0: Transceiver drive enable
1: Transceiver drive disable

VGA_N[4:0] in VME geographical addressing
VGAP_N in VME geographical addressing parity
VIACK_N_IN in VME interrupt acknowledge, input
VIACK_N_OUT out VME interrupt acknowledge, output
VIACK_N_INT_DRV_N out Internal VME interrupt acknowledge, drive enable

0: Core drives output
1: Core doesn't drive output

VIACKI_N in VME IACK* daisy-chain input
VIACKO_N out VME IACK* daisy-chain output
VIRQI_N[7:1] in VME IRQ* input
VIRQO[7:1] out VME IRQ* output
VLWORD_N_IN in VME longword data transfer size indicator, input
VLWORD_N_OUT out VME longword data transfer size indicator, output
VLWORD_N_INT_DRV_N out Internal VME longword data transfer size indicator, drive enable

0: Core drives output
1: Core doesn't drive output

VSYSFAILI_N in VME SYSFAIL* input
VSYSFAILO_N out VME SYSFAIL* output
VSYSCLK out VME SYSCLK* output
VCFG_SYSCON in VME system controller configuration

This setting becomes active if VAUTOCFG=0.
0: This board is not a system controller
1: This board is a system controller

VAUTOCFG in VME system controller automatic configuration enable
0: System configuration based on VCFG_SYSCON input
1: Enable automatic system configuration

VSYSCON_DIR out VME system controller
1: VME bus bridge chip is system controller
0: VME bus bridge chip is not system controller

VSYSRESETO out VME system reset output
VSYSRESETI_N in VME system reset input
VWRITE_N_IN in VME write indicator, input
VWRITE_N_OUT out VME write indicator, output

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 28

V M E S C m o d u l e D a t a s h e e t

Pin Name Direction Description
VWRITE_N_INT_DRV_N out VME write indicator, drive enable

0: Core drives output
1: Core doesn't drive output

Note:
– For better noise immunity, VIACKI_N and VBGI_N[3:0] should use schmitt-trigger type

inputs

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 29

V M E S C m o d u l e D a t a s h e e t

2.3. VMEbus Signals External Buffering Example

The following figures shows how external buffers can be connected to the VMESCmodule.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 30

Figure 2.1: External VME transceiver connectivity

VD[31:0] D[31:0]
VD_DIR

VDRV_N Three-state 48 mA

B
AB/AB

OE

A

VA[31:1], VLWORD_N A[31:1], LWORD*
VA_DIR

VDRV_N Three-state 48 mA

B
AB/AB

OE

A

VAM[5:0], VWRITE_N, VIACK_N AM[5:0], WRITE*, IACK*
AM_DIR

VDRV_N Three-state 48 mA

B
AB/AB

OE

A

VDS_N[1:0] DS1-0*
VDS_DIR

GND Three-state 64 mA

B
AB/AB

OE

A

VAS_N AS*
VAS_DIR

GND Three-state 64 mA

B
AB/AB

OE

A

VBCLR_N BCLR*
VSYSCON_DIR

GND Three-state 64 mA

B
AB/AB

OE

A

V
M

E
 S

ys
te

m
 C

o
n

tr
o

lle
r

V
M

E
 B

u
s

VDTACK_N DTACK*
VDTACK_DIR

VDTACK_DRV_N Three-state 64 mA

B
AB/AB

OE

A

Open-Collector 48 mA

ACFAIL*, BR3-0*,
SYSRESET*, SYSFAIL*
BBSY*, IRQ7-1*, BERR*

VBRO_N[3:0], VSYSRESETO_N,
VSYSFAILO_N,
VBBSYO_N, VIRQO_N[7-1],
VBERRO_N

GND

VACFAILI_N,
VBRI_N[3:0], VSYSRESETI_N,
VSYSFAILI_N, VBBSYI_N,
VIRQI_N[7-1], VBERRI_N

YA

YA

OE

VSYSCLK SYSCLK
VSYSCON_DIR Three-state 64 mA

B

OE

A

V M E S C m o d u l e D a t a s h e e t

2.4. User Side Interfaces

The VMESCmodule contains two different user-side interfaces, the local bus master port and the
local bus slave port. The slave port is used to access the core's internal CSR space whereas the
master port provides a way for the core to access memories and registers located on the user-
side.

2.4.1. Special Purpose User Side Signals

Pin Name Type Description
user_int_n out Interrupt request

This signal is used to report interrupt requests based on the
interrupt status and enable register (INT_STATUS/INT_EBL) to
the user side.

0: Interrupt request is pending
1: No interrupt request pending

user_reset_n out Local system reset output. This pin is asserted using the
LRESET control bit.

0: Reset is active
1: Normal operation

user_sysfail_n out System Failure Diagnostics
This signal is used for diagnostics to assist a visual inspection
to determine which board has failed.

0: The boards SYSFAIL* control register is asserted
1: Normal operation

user_int_status[17:0] out Masked interrupt status register
This vector represents the INT_STATUS register masked with
the INT_EBL register.

[17]: Mailbox 3 Interrupt Status
[16]: Mailbox 2 Interrupt Status
[15]: Mailbox 1 Interrupt Status
[14]: Mailbox 0 Interrupt Status
[13]: VME Arbiter Timer Error Status
[12]: VME Bus Error Interrupt Status
[11]: DMA Error Interrupt Status
[10]: DMA Done Interrupt Status
[9]: VME Software Interrupt Acknowledge Status

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 31

V M E S C m o d u l e D a t a s h e e t

Pin Name Type Description
user_int_status[17:0]
continued

out Masked interrupt status register, continued
[8]: VME Interrupt Request 1 Status
[7]: VME Interrupt Request 2 Status
[6]: VME Interrupt Request 3 Status
[5]: VME Interrupt Request 4 Status
[4]: VME Interrupt Request 5 Status
[3]: VME Interrupt Request 6 Status
[2]: VME Interrupt Request 7 Status
[1]: VME SYSFAIL Interrupt Status
[0]: VME ACFAIL Interrupt Status

user_vint_req in User VME interrupt request
This input is used to create a VME interrupt request. The VME
interrupt request will remain asserted as long as user_vint_req
is asserted (RORA).

0: No user side VME interrupt request pending
1: User side VME interrupt request pending

user_bit_set_event[7:0] out User-bit set event
user_bit_clear_event[7:0] out User-bit clear event
user_bit_status[7:0] in User-bit status

2.4.2. Local Bus Master Port

The local bus master port is 32-bit wide. VME cycles such as D08(EO) or D16 are mapped to the
respective byte position in the 32-bit word. A D64-MBLT cycle is translated into two consecutive
32-bit local bus cycles.

Pin Name Type Description
lbus_mstr_acc_req out Data access request

Active high until lbus_mstr_acc_ack acknowledges the request
(or VME bus error occurs).

lbus_mstr_acc_ack in User-side acknowledgment signal
User side access is finished by asserting lbus_mstr_acc_ack
for one clock cycle.

lbus_mstr_addr[31:2] out Registered VME address bus
lbus_mstr_am[5:0] out Registered VME address bus modifier
lbus_mstr_data_wr[31:0] out Local data bus that contains the data written to the user side.

During a write operation, lbus_mstr_data_wr is valid when
usr_acc_req is asserted.

lbus_mstr_data_rd[31:0] in Local data bus that contains the data read from the user side.
During a read operation lbus_mstr_data_rd must be valid when
lbus_mstr_acc_ack is asserted.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 32

V M E S C m o d u l e D a t a s h e e t

Pin Name Type Description
lbus_mstr_rwn out Data read/write indicator

0: Write
1: Read

lbus_mstr_lock out Data cycle lock indicator used for read-modify-write cycles
0: No action
1: Lock target resource until consecutive write cycle finished

lbus_mstr_byte_valid[3:0] out User data byte valid indicator
Indicates which byte of the lbus_mstr_data_wr/
lbus_mstr_data_rd bus is valid or requested.

[0]: lbus_mstr_data_rd[7:0] is valid
[1]: lbus_mstr_data_rd[15:8] is valid
[2]: lbus_mstr_data_rd[23:16] is valid
[3]: lbus_mstr_data_rd[31:24] is valid

lbus_mstr_sel_crcsr out User memory select – CRCSR
0: No access
1: The user-side CR/CSR memory is selected

lbus_mstr_sel_slvw[7:0] out User memory select – Slave Window
[0]: Slave window 1 access
 0: No access
 1: Slave access to memory window 1
[1]: Slave window 2 access
 0: No access
 1: Slave access to memory window 2
[2]: Slave window 3 access
 0: No access
 1: Slave access to memory window 3
[3]: Slave window 4 access
 0: No access
 1: Slave access to memory window 4
[4]: Slave window 5 access
 0: No access
 1: Slave access to memory window 5
[5]: Slave window 6 access
 0: No access
 1: Slave access to memory window 6
[6]: Slave window 7 access
 0: No access
 1: Slave access to memory window 7
[7]: Slave window 8 access
 0: No access
 1: Slave access to memory window 8

lbus_mstr_sel_mstr out User memory select – Master
0: No access
1: Master access to user-side memory

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 33

V M E S C m o d u l e D a t a s h e e t

Local Bus Master Port Write Cycle
Following figure shows two local bus write cycles with different wait-states. While an access is in
process, all signals coming from the VME core are stable. The end of the access is indicated by
the user-side logic by asserting lbus_mstr_acc_ack.

Local Bus Master Port Read Cycle
The read cycle access is similar to the write cycle. While a read is performed, lbus_mstr_data_rd
must be valid at the rising edge of the clock when lbus_mstr_acc_ack is asserted.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 34

* lbus_mstr_addr, lbus_mstr_am, lbus_mstr_byte_valid

Figure 2.3: User read cycle with different wait-states

* lbus_mstr_addr, lbus_mstr_am, lbus_mstr_byte_valid

Figure 2.2: User write cycle with different wait-states

1ws read0ws read

0ws read 1ws read

clk_sys

lbus_mstr_selx

lbus_mstr_acc_req

lbus_mstr_acc_ack

lbus_mstr_data_wr

lbus_mstr_rwn

others *

1ws read0ws read

0ws read 1ws read

clk_sys

lbus_mstr_selx

lbus_mstr_acc_req

lbus_mstr_acc_ack

lbus_mstr_data_rd

lbus_mstr_rwn

others *

V M E S C m o d u l e D a t a s h e e t

Local Bus Master Port Read-Modify-Write Cycle
Whenever a D08(EO), D16 or D32 read cycle is detected, lbus_mstr_lock is asserted. It will
remain asserted until either vas_n is released after the read cycle or until the following write cycle
is completed.
Following figure shows a regular read-modify-write cycle where lbus_mstr_lock stays asserted
during the read and write cycles.

Following figures shows how lbus_mstr_lock stays asserted while the local cycle is already
completed. Using lock to guarantee atomic read-modify-write execution on a memory resource
will slow down the local data path.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 35

Figure 2.4: User read-modify-write cycle

read writemodify

Note: The VME waveform is not cycle accurate; user-side cycles shown with 1 wait-state

VAS*

VDS*

VDTACK*

VWRITE*

clk_sys

lbus_mstr_acc_req

lbus_mstr_acc_ack

lbus_mstr_data_rd

lbus_mstr_data_wr

lbus_mstr_rwn

lbus_mstr_lock

V M E S C m o d u l e D a t a s h e e t

2.4.3. Local Bus Slave Port

The local bus slave port allows the user-side logic to access the System Controller's internal
configuration and status registers or to create a coupled VME data transfer.
When performing a VME read or write operation, lbus_slv_byte_valid[3:0] is used to determine
the VME cycle type (D08(EO), D16 or D32).

Pin Name Type Description
lbus_slv_acc_req in Data access request

Active high until lbus_slv_acc_ack acknowledges the request
(or VME bus error occurs).

lbus_slv_acc_ack out Data access acknowledge
0: Normal operation
1: The user side access cycle successfully finished

This signal is asserted for one clock cycle.
lbus_slv_acc_nack out Data access not acknowledged

0: Normal operation
1: The user side access cycle is aborted due to an error

This signal is asserted for one clock cycle.
lbus_slv_sel_csr in Slave select, CR/CSR memory space

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 36

Figure 2.5: User read-only cycle

read bus locked while VAS* is asserted

Note: The VME waveform is not cycle accurate; user-side cycles shown with 1 wait-state

VAS*

VDS*

VDTACK*

VWRITE*

clk_sys

lbus_mstr_acc_req

lbus_mstr_acc_ack

lbus_mstr_data_rd

lbus_mstr_rwn

lbus_mstr_lock

V M E S C m o d u l e D a t a s h e e t

Pin Name Type Description
lbus_slv_sel_vme in Slave select, VME address space
lbus_slv_addr[31:2] in Access address

For CR/CSR memory space access, only the bit range [9:2] is
taken into account.

lbus_slv_am[5:0] in VME address modifier
lbus_slv_data_wr[31:0] in Data write bus
lbus_slv_data_rd[31:0] out Data read bus
lbus_slv_byte_valid[3:0] in Data byte valid indicator

Indicates which bytes of the lbus_slv_data_wr or
lbus_slv_data_rd are valid.

[0]: data[7:0] is valid
[1]: data[15:8] is valid
[2]: data[23:16] is valid
[3]: data[31:24] is valid

lbus_slv_rwn in Data read/write indicator
0: Write
1: Read

lbus_slv_lock in Data cycle lock indicator used for read-modify-write cycles
0: No action
1: Lock target resource until consecutive cycle finished

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 37

V M E S C m o d u l e D a t a s h e e t

Local Bus Slave Port CSR Write Cycle

Local Bus Slave Port CSR Read Cycle

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 38

* lbus_slv_addr, lbus_slv_am, lbus_slv_byte_valid

Figure 2.6: Local bus slave port CSR write timing

* lbus_slv_addr, lbus_slv_am, lbus_slv_byte_valid

Figure 2.7: Local bus slave port CSR read timing

1ws read0ws read

0ws read 1ws read

clk_sys

lbus_slv_acc_req

lbus_slv_acc_ack

lbus_slv_sel_csr

lbus_slv_data_wr

lbus_slv_rwn

others *

1ws read0ws read

0ws read 1ws read

clk_sys

lbus_slv_acc_req

lbus_slv_acc_ack

lbus_slv_sel_csr

lbus_slv_data_rd

lbus_slv_rwn

others *

V M E S C m o d u l e D a t a s h e e t

2.4.4. VME Access Cycles

When lbus_slv_sel_vme is asserted, user side cycles are directly translated into the respective
D08(EO), D16, or D32 VME cycles. In case of a VME bus error, the transaction is aborted by
driving lbus_slv_acc_nack high for one clock cycle. Read-modify-write cycles are generated by
asserting lbus_slv_lock.

Local Bus Slave Port VME Read Cycle

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 39

Figure 2.8: Coupled local bus VME read cycle

Note: The VME waveform is not cycle accurate

clk_sys

lbus_slv_sel_vme

lbus_slv_acc_req

lbus_slv_acc_ack

lbus_slv_data_rd

lbus_slv_data_wr

lbus_slv_rwn

lbus_slv_lock

vas_n

vds_n

vdtack_n

V M E S C m o d u l e D a t a s h e e t

Local Bus Slave Port VME Read Cycle With Bus Error
If a bus error happens during a VME cycle, the local bus access is terminated by asserting
lbus_slv_nack for one clock cycle.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 40

Figure 2.9: Coupled local bus VME read cycle with bus error

Note: The VME waveform is not cycle accurate

clk_sys

lbus_slv_sel_vme

lbus_slv_acc_req

lbus_slv_acc_ack

lbus_slv_acc_nack

lbus_slv_data_rd

lbus_slv_data_wr

lbus_slv_rwn

lbus_slv_lock

vas_n

vds_n

vdtack_n

vberr_n

V M E S C m o d u l e D a t a s h e e t

Local Bus Slave Port VME Read-Modify-Write Cycle
To create a VME read-modify-write cycle, the user has to assert lbus_slv_lock during the read
cycle. This will cause the VME master to keep the VME address strobe vas_n asserted between
the read and write cycle.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 41

Figure 2.10: Coupled local bus VME read-modify-write cycle

read writemodify

Note: The VME waveform is not cycle accurate

clk_sys

lbus_slv_sel_vme

lbus_slv_acc_req

lbus_slv_acc_ack

lbus_slv_addr

lbus_slv_am

lbus_slv_data_rd

lbus_slv_data_wr

lbus_slv_rwn

lbus_slv_lock

vas_n

vds_n

vdtack_n

V M E S C m o d u l e D a t a s h e e t

Auto-DTACK
Auto-DTACK is a backwards compatibility mode that implements a non VME compliant behavior
that is used by some now obsolete VME master and slave controllers. It allows the master to
send a broadcast message to several slaves without having the slaves assert DTACK. The
master will assert DTACK based on the configuration settings ADTACK_T1 and ADTACK_T2.
This feature is selected by asserting lbus_slv_auto_dtack when requesting a VME access from
the local slave port:

Auto-DTACK should only be used to interface with old hardware and systems that require
this feature and never should be used for new designs.

Copyright © 2009-2015, Inicore Inc. Signal Description - Page 42

Figure 2.11: Auto-DTACK compatibility mode

VME master drives DTACK*

ADTACK_T2ADTACK_T1

Note: The VME waveform is not cycle accurate

clk_sys

lbus_slv_sel_vme

lbus_slv_acc_req

lbus_slv_acc_ack

lbus_slv_data_rd

lbus_slv_data_wr

lbus_slv_rwn

lbus_slv_force_dtack

vas_n

vds_n

vdtack_n

V M E S C m o d u l e D a t a s h e e t

3 . C or e C o n fi gur a t i o n

The core behavior can be set by using following top-level generics:

Generic Name Description
G_VME_SLVWn_AV
n=1..8

Slave window available
For gate-count optimization, each slave access window can individually
disabled.

0: Slave window is not available
1: Slave window is available

G_VME_SLVWn_SIZE
n=1..8

Slave window size
The window size is defined as 256 x 2G_VME_SLVWx_SIZE :

0: 256 bytes
1: 512 bytes
2: 1k bytes
…
15: 8M bytes
Others: not valid

G_SYSFAIL_MODE SYSFAIL* Mode Selection
Upon hardware reset or a system reset, the core asserts SYSFAIL*

0: Do not assert SYSFAIL* upon reset
1: Assert SYSFAIL* upon reset

Once the core has completed its internal failure analysis routine,
SYSFAIL* has to be released by the application by using the
BIT_CLEAR.SDES register.

G_VME_SLV_DTACK Rescinding DTACK enable
The VME slave block can use rescinding dtack to accelerate data trans-
mission.

0: Disabled
1: Enabled

G_COMP_UCSR_MEM User CSR memory mapping backwards compatibility
Starting with core version 1.3, the base address of the user CSR
changed from 0x7FC00 to 0x7F800. To provide backwards compatibility
with existing implementations, this generic enables to revert back to the
original memory mapping.

0: User CSR starts at 0x7F800 (default)
1: User CSR starts at 0x7FC00 (backwards compatibility setting)

Backwards compatibility mode should not be used for new designs
and will be discontinued in the future!

Copyright © 2009-2015, Inicore Inc. Core Configuration - Page 43

V M E S C m o d u l e D a t a s h e e t

Generic Name Description
G_COMP_SLVW_DEC Slave window decoder backwards compatibility

Starting with core version 1.3, the slave access decoder operation
changed. Now the address decoding works as defined in the VME64x
standard. To provide backwards compatibility with existing implementa-
tion, this generic enables to revert back to the original slave access
decoder implementation.

0: ADER based implementation
1: SLVW_xx based implementation (backwards compatibility setting)

Backwards compatibility mode should not be used for new designs
and will be discontinued in the future!

G_USER_VERSION User Version Number
Using this generic, the user can set a FPGA implementation specific revi-
sion number.
The integer generic is interpreted as a 16-bit number and mapped to bits
31..16 of the DEV_VER version register.

G_INTERRUPTER Interrupter selection
0: Simple D08(O) interrupter with one STATUS/ID vector
1: Advanced D08(O), D16 and D32 interrupter with separate

STATUS/ID vectors for software and user interrupts.

3.1. Rescinding DTACK

The VME64 specification allows DTACK to be operated as a rescinding signal instead of an open-
collector class signal. This results in an accelerated bus cycle. This feature can be selected by
setting the top level generic G_VME_SLV_DTACK = 1.

Copyright © 2009-2015, Inicore Inc. Core Configuration - Page 44

V M E S C m o d u l e D a t a s h e e t

4 . P r o g r a m m e r s Gu i d e

4.1. Internal CSR Memory Space

Following table provides an overview of all registers that are part of the VMESCmodule.

Address Offset Name Description
VME Local Bus

Control/Status Registers
0x7FFFC 0x7FC CRBAR CR/CSR Base Address Register (BAR)
0x7FFF8 0x7F8 BIT_SET Bit set register
0x7FFF4 0x7F4 BIT_CLEAR Bit clear register
0x7FFF0 0x7F0 CRAM_OWNER Configuration RAM (CRAM) Owner Register
0x7FFEC 0x7EC UBIT_SET User bit-set register
0x7FFE8 0x7E8 UBIT_CLEAR User bit-clear register

0x7FFD0 -
0x7FFDC

0x7D0 -
0x7DC

CSR_ADER7 Function 7 ADER

0x7FFC0 -
0x7FFCC

0x7C0 -
0x7CC

CSR_ADER6 Function 6 ADER

0x7FFB0 -
0x7FFBC

0x7B0 -
0x7BC

CSR_ADER5 Function 5 ADER

0x7FFA0 -
0x7FFAC

0x7A0 -
0x7AC

CSR_ADER4 Function 4 ADER

0x7FF90 -
0x7FF9C

0x790 -
0x79C

CSR_ADER3 Function 3 ADER

0x7FF80 -
0x7FF8C

0x780 -
0x78C

CSR_ADER2 Function 2 ADER

0x7FF70 -
0x7FF7C

0x770 -
0x77C

CSR_ADER1 Function 1 ADER

0x7FF60 -
0x7FF6C

0x760 -
0x76C

CSR_ADER0 Function 0 ADER

User Control Status Registers
0x7F938 0x138 SLV_ACC_DEC5 Slave Access Decoder 5
0x7F934 0x134 SLV_ACC_CMP5 Slave Access Address Decoder Compare Register 5
0x7F930 0x130 SLV_ACC_MSK5 Slave Access Address Decoder Mask Register 5
0x7F928 0x128 SLV_ACC_DEC6 Slave Access Decoder 6
0x7F924 0x124 SLV_ACC_CMP6 Slave Access Address Decoder Compare Register 6
0x7F920 0x120 SLV_ACC_MSK6 Slave Access Address Decoder Mask Register 6
0x7F918 0x118 SLV_ACC_DEC7 Slave Access Decoder 7
0x7F914 0x114 SLV_ACC_CMP7 Slave Access Address Decoder Compare Register 7
0x7F910 0x110 SLV_ACC_MSK7 Slave Access Address Decoder Mask Register 7
0x7F908 0x108 SLV_ACC_DEC8 Slave Access Decoder 8
0x7F904 0x104 SLV_ACC_CMP8 Slave Access Address Decoder Compare Register 8
0x7F900 0x100 SLV_ACC_MSK8 Slave Access Address Decoder Mask Register 8

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 45

V M E S C m o d u l e D a t a s h e e t

Address Offset Name Description
VME Local Bus

0x7F8F0 0x0F0 DEV_CTRL Device Control Register
0x7F8FC 0x0FC DEV_VER Device Version
0x7F8D0 0x0D0 SYS_CTRL System Controller
0x7F8B0 0x0B0 VME_MSTR VME Master Controller
0x7F8A8 0x0A8 SLV_ACC_DEC1 Slave Access Decoder 1
0x7F8A4 0x0A4 SLV_ACC_CMP1 Slave Access Address Decoder Compare Register 1
0x7F8A0 0x0A0 SLV_ACC_MSK1 Slave Access Address Decoder Mask Register 1
0x7F898 0x098 SLV_ACC_DEC2 Slave Access Decoder 2
0x7F894 0x094 SLV_ACC_CMP2 Slave Access Address Decoder Compare Register 2
0x7F890 0x090 SLV_ACC_MSK2 Slave Access Address Decoder Mask Register 2
0x7F888 0x088 SLV_ACC_DEC3 Slave Access Decoder 3
0x7F884 0x084 SLV_ACC_CMP3 Slave Access Address Decoder Compare Register 3
0x7F880 0x080 SLV_ACC_MSK3 Slave Access Address Decoder Mask Register 3
0x7F878 0x078 SLV_ACC_DEC4 Slave Access Decoder 4
0x7F874 0x074 SLV_ACC_CMP4 Slave Access Address Decoder Compare Register 4
0x7F870 0x070 SLV_ACC_MSK4 Slave Access Address Decoder Mask Register 4
0x7F85C 0x06C DMA_STAT DMA Status Register
0x7F858 0x068 DMA_CMD DMA Command Register
0x7F854 0x064 DMA_LADDR DMA Local Address Register
0x7F850 0x060 DMA_VADDR DMA VME Address Register
0x7F85C 0x05C MAILBOX1 Mailbox Register 1
0x7F858 0x058 MAILBOX2 Mailbox Register 2
0x7F854 0x054 MAILBOX3 Mailbox Register 3
0x7F850 0x050 MAILBOX4 Mailbox Register 4
0x7F840 0x040 SEMAPHORE Semaphore Register
0x7F83C 0x03C VME_INT_STAT_SW VME Interrupter Software STATUS/ID
0x7F838 0x038 VME_INT_MAP VME Interrupter Map
0x7F834 0x034 VME_INT_STAT VME Interrupter STATUS/ID
0x7F830 0x030 VME_INT VME Interrupter
0x7F82C 0x02C VME_IRQ1_STAT VME IRQ1 STATUS/ID
0x7F828 0x028 VME_IRQ2_STAT VME IRQ2 STATUS/ID
0x7F824 0x024 VME_IRQ3_STAT VME IRQ3 STATUS/ID
0x7F820 0x020 VME_IRQ4_STAT VME IRQ4 STATUS/ID
0x7F81C 0x01C VME_IRQ5_STAT VME IRQ5 STATUS/ID
0x7F818 0x018 VME_IRQ6_STAT VME IRQ6 STATUS/ID
0x7F814 0x014 VME_IRQ7_STAT VME IRQ7 STATUS/ID
0x7F810 0x010 VME_IRQH_CMD VME Interrupt Handler Command
0x7F80C 0x00C VINT_STATUS VME Interrupt Status Register
0x7F808 0x008 VINT_EBL VME Interrupt Enable Register
0x7F804 0x004 INT_STATUS Interrupt Status Register
0x7F800 0x000 INT_EBL Interrupt Enable Register

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 46

V M E S C m o d u l e D a t a s h e e t

Note:
– Undefined register locations will read as 0x00.
– All registers support byte, half-word, and word access cycles.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 47

V M E S C m o d u l e D a t a s h e e t

4.2. Description Of Registers

4.2.1. Device Control Register: DEV_CTRL

VME Address Offset Local Bus Address
0x7F8F0 0x0F0

Bits Function Description R/W Reset
value

31:24 RESERVED N/A R 0x0
0 LENDIAN Local bus endian selection

0: Local bus is big endian
1: Local bus is little endian

R/W 0x0

4.2.2. Device Version: DEV_VER

The device version uses following format X.Y.Z-rcN

VME Address Offset Local Bus Address
0x7F8FC 0x0FC

Bits Function Description R/W Reset
value

31:15 VERUSR User version
Using the top-level generic G_USER_VERSION, the user
can set an FPGA specific revision number.

R n/a

15:12 VERX Core major version R 0x1
11:8 VERY Core minor version R 0x3
7:4 VERZ Core patch version R n/a
3:0 VERN Core release candidate

0: Official release
1..15: Release candidate

R n/a

4.2.3. System Controller: SYS_CTRL

VME Address Offset Local Bus Address
0x7F8D0 0x0D0

Bits Function Description R/W Reset
value

31:24 RESERVED N/A R 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 48

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

23:16 BERRTIMER BERR Timer
0: BERR timer is not active
1: Timeout is 1us
..
255: Timeout is 255us

R/W 0x0

15:13 RESERVED N/A R 0x0
12 ACFAIL_EBL ACFAIL* Detect Enable

1: SYSRESET* is generated upon detection of ACFAIL*
as show in figure 1.5.

0: No action

R/W 0x0

11 LRESET Local Reset
1: The USER_RESET_N output is asserted for 200ms.

This is used to re-initialize the local system.
0: No action

Reading this register bit will return the state of
USER_RESET_N

R/W 0x0

10 SRESET VME system reset: SYSRESET
1: The VSYSRESETO_N output is asserted for 200ms.
0: No action

Reading back this register bit will return VSYSRESTI_N.

R/W 0x0

9 BUS_ARB Bus arbiter
1: Fixed priority

In this mode, bus requests are served from level 3
through 0. The highest request is served first.
If a bus request with a higher priority is detected, the
bus arbiter tries to clear the bus by asserting BCLR*.

0: Round robin priority
In this mode, all levels are served in a round robin
mode. Scanning from levels 3 to 0. Only one grant is
issue per level.

R/W 0x0

8 SYSCTRL_SET Activate System Controller
1: This board is the system controller
0: No action

W 0x0

7 RESERVED N/A R 0x0
6 SYSCTRL System Controller Status

1: This board is system controller
0: This board is not system controller

The board automatically becomes system controller upon
power-up when the geographic address indicates that the
board is located in slot 1. Firmware can decide to overwrite
this setting by using the Activate/De-Activate System
Controller command registers.

R -

5 GAP Geographic Address Parity
This bit represents the inverted input state of the VGAP_N
input.

R -

4:0 GA Geographic Address
These bits represent the inverted input state of the
VGA_N[4:0] inputs.

R -

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 49

V M E S C m o d u l e D a t a s h e e t

4.2.4. VME Master Controller: VME_MSTR

VME Address Offset Local Bus Address
0x7F8B0 0x0B0

Bits Function Description R/W Reset
value

31:24 ADTACK_T1 Auto-DTACK T1 (setup time)
This parameter defines the DTACK setup time as a multiple
of system clock periods. It is the delay between when the
master asserts DS0/DS1 and DTACK.
The effective number is the programmed number plus 1.
Auto-DTACK is a backwards compatibility mode to interface
with older, non-VME compliant hardware that requires this
feature.

R/W 0x0

23:16 ADTACK_T2 Auto-DTACK T2 (hold time)
This parameter defines how long the master asserts DTACK
as a multiple of the system clock periods.
The effective number is the programmed number plus 1.
Auto-DTACK is a backwards compatibility mode to interface
with older, non-VME compliant hardware that requires this
feature.

R/W 0x0

15:4 RESERVED N/A R 0x0
3 VMSTREL VME Master Release Mode

1: Release on request (ROR)
The bus is only released when an other master
requests bus ownership.

0: Release when done (RWD)
The bus is release upon completion of the current
transfer.

R/W 0x0

2 VMSTFAIR VME Master Fair Mode
The bus requester observes the FAIR request type. A bus
request is only asserted if no other bus request is pending
with the same priority.

1: Use FAIR requesting scheme
0: Use direct request

R/W 0x0

1:0 VMSTREQ VME Master Request Level R/W 0x0

4.2.5. Slave Access Decoding (1-8): SVL_ACC_DECn

VME Address Offset Local Bus Address
Window 1 0x7F8A8 0x0A8
Window 2 0x7F898 0x098
Window 3 0x7F888 0x088

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 50

V M E S C m o d u l e D a t a s h e e t

VME Address Offset Local Bus Address
Window 4 0x7F878 0x078
Window 5 0x7F938 0x138
Window 6 0x7F928 0x128
Window 7 0x7F918 0x118
Window 8 0x7F908 0x108

Bits Function Description R/W Reset
value

31 SLVW_EBL Slave Window Enable
0: Windows is disabled
1: Window is enabled

R/W 0x0

30 SLVW_ADTACK Auto-DTACK
1: Auto-DTACK support enabled
0: Normal operation

For proper operation, the VME slave requires an auto_dtack
setup time ADTACK_T1 of 5 or more.
Auto-DTACK is a backwards compatibility mode to interface
with older, non-VME compliant hardware that requires this
feature.

R/W 0x0

29 MBLT Access Overwrite
1: Slave responds to MBLT access cycles
0: As defined in ADER.AM

R/W 0x0

28 BLT Access Overwrite
1: Slave responds to BLT access cycles
0: As defined in ADER.AM

R/W 0x0

27 Supervisory Access Overwrite
1: Supervisory access to this window is enabled
0: As defined in ADER.AM

R/W 0x0

26 Non-Privileged Access Overwrite
1: Non-privileged access to this window is enabled
0: As defined in ADER.AM

R/W 0x0

25 Program Access Overwrite (SCT)
1: Program access to this window is enabled
0: As defined in ADER.AM

R/W 0x0

24 Data Access Overwrite (SCT)
1: Data access to this window is enabled
0: As defined in ADER.AM

R/W 0x0

23:8 SLVW_OFFSET Address Offset R/W 0x0
7 RESERVED N/A R 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 51

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

6:4 SLVW_SEL Slave Window Selector
By default, there is a direct mapping between the slave
address window and the user memory select signal: slave
window n uses lbus_mstr_sel_slvw[n] signal.
This mapping can be changed so several windows can use
the same user memory select signal.

0: Slave window n uses lbus_mstr_sel_slvw[0]
1: Slave window n uses lbus_mstr_sel_slvw[1]
2: Slave window n uses lbus_mstr_sel_slvw[2]
3: Slave window n uses lbus_mstr_sel_slvw[3]
4: Slave window n uses lbus_mstr_sel_slvw[4]
5: Slave window n uses lbus_mstr_sel_slvw[5]
6: Slave window n uses lbus_mstr_sel_slvw[6]
7: Slave window n uses lbus_mstr_sel_slvw[7]

After reset, this register is configured as follows:
– Slave window 0 uses lbus_mstr_sel_slvw[0]
– Slave window 1 uses lbus_mstr_sel_slvw[1]
– Slave window 2 uses lbus_mstr_sel_slvw[2]
– Slave window 3 uses lbus_mstr_sel_slvw[3]
– Slave window 4 uses lbus_mstr_sel_slvw[4]
– Slave window 5 uses lbus_mstr_sel_slvw[5]
– Slave window 6 uses lbus_mstr_sel_slvw[6]
– Slave window 7 uses lbus_mstr_sel_slvw[7]

R/W 0x0

3:2 RESERVED n/a R/W 0x0
1 SLVW_DFS Dynamic Function Sizing

This bit controls if dynamic function sizing is supported. If
supported, the SLVW_ADEM register can be read using the
ADER register.

1: Dynamic function sizing is supported
0: Dynamic function sizing is not supported

R/W 0x0

0 SLVW_FAF Fixed-Address Function
This bit controls whether the ADER register of this slave
window is programmable. If the register is not program-
mable, it needs to be configured before this bit is set!

1: The ADER register is not programmable
0: The ADER register is programmable

R/W 0x0

When backwards compatibility mode G_COMP_SLVW_DEC is used, bits 7..0 have an
alternative function. Backwards compatibility mode should not be used for new designs
and will be discontinued in the future!

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 52

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

7 SLVW_AM_MBLT MBLT Access
1: Slave responds to MBLT access cycles
0: Slave does not respond

R/W 0x0

6 SLVW_AM_BLT BLT Access
1: Slave responds to BLT access cycles
0: Slave does not respond

R/W 0x0

5:4 SLVW_AM_AS Address Space
Defines which in which VME address space this window is
located.

0: A16
1: A24
2: A32
OTHERS: RESERVED

R/W 0x0

3 SLVW_AM_SA Supervisory Access
1: Supervisory access to this window Is enabled
0: Supervisory access to this window Is not enabled

R/W 0x0

2 SLVW_AM_NPA Non-Privileged Access
1: Non-privileged access to this window Is enabled
0: Non-privileged access to this window Is not enabled

R/W 0x0

1 SLVW_AM_PA Program Access
1: Program access to this window Is enabled
0: Program access to this window Is not enabled

R/W 0x0

0 SLVW_AM_DA Data Access
1: Data access to this window Is enabled
0: Data access to this window Is not enabled

R/W 0x0

4.2.6. Slave Access Address Decoder Compare Register (1-8):
SLV_ACC_CMPn

This register is only available when the G_COMP_SLVW_DEC backwards compatibility
mode is used! Backwards compatibility mode should not be used for new designs and will
be discontinued in the future!

VME Address Offset Local Bus Address
Window 1 0x7F8A4 0x0A4
Window 2 0x7F894 0x094
Window 2 0x7F884 0x084
Window 3 0x7F874 0x074
Window 5 0x7F934 0x134
Window 6 0x7F924 0x124
Window 7 0x7F914 0x114
Window 8 0x7F904 0x104

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 53

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

31:24
23:16
15:8

SLVW_ADER Address Decoder Compare Register, bits 31:24 R/W 0x0
Address Decoder Compare Register, bits 23:16 R/W 0x0
Address Decoder Compare Register, bits 15:8 R/W 0x0

7:0 RESERVED N/A R 0x0

4.2.7. Slave Access Address Decoder Mask Register (1-8):
SLV_ACC_MSKn

VME Address Offset Local Bus Address
Window 1 0x7F8A0 0x0A0
Window 2 0x7F890 0x090
Window 3 0x7F880 0x080
Window 4 0x7F870 0x070
Window 5 0x7F930 0x130
Window 6 0x7F920 0x120
Window 7 0x7F910 0x110
Window 8 0x7F900 0x100

Bits Function Description R/W Reset
value

31:24
23:16
15:8

SLVW_ADEM Address Decoder Mask Register, bits 31:24 R/W 0x0
Address Decoder Mask Register, bits 23:16 R/W 0x0
Address Decoder Mask Register, bits 15:8 R/W 0x0

7:0 RESERVED N/A R 0x0

4.2.8. DMA Status Register: DMA_STAT

VME Address Offset Local Bus Address
0x7F86C 0x06C

Bits Function Description R/W Reset
value

31:18 RESERVED N/A R 0x0
17:8 DMAS_BTCNT DMA Beat Count

This counter indicates which beat is being transmitted. Using
this field, the user logic can determine where an error
happened and resume data transmission from there.

R 0x0

7:4 RESERVED N/A R 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 54

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

3:2 DMAS_ERRC DMA Error Code
0: VME Bus Error Detected
1: VME Retry Detected
2: User Abort
3: Reserved

R 0x0

1 DMAS_ERR DMA Error
1: DMA operation completed with error
0: Normal operation

R 0x0

0 DMAS_REQ DMA Request Pending
1: A DMA request is pending
0: DMA operation is complete

R 0x0

4.2.9. DMA Command Register: DMA_CMD

VME Address Offset Local Bus Address
0x7F868 0x068

Bits Function Description R/W Reset
value

31:23 RESERVED N/A R 0x0
24 DMAC_FA DMA Fixed Local Bus Address

When data is transferred to or from a local FIFO, the local
address shall remain constant between consecutive BLT or
MBLT data transfers.

1: Local address remains constant
0: Local address is incremented with each successive
 transfer

R/W 0x0

23 DMAC_RAE DMA Command Read Ahead Enable
To accelerate data transfer from the local bus to the VME
bus, local data can be pre-fetched

1: Enabled
0: Disabled

R/W 0x0

22 DMAC_PWE DMA Command Posted Write Enable
To accelerate data transfer from the VME bus to the local
bus, a VME transaction can be terminated before the data
write on the local bus side was completed.

1: Enabled
0: Not enabled

R/W 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 55

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

21:19 DMAC_WIDTH DMA Command WIDTH
Defines the data width

0: D08(EO)
1: D16
2: Reserved
3: D32
4: D32-BLT
5: Reserved
6: D64-MBLT
7: Reserved

R/W 0x0

18:9 DMAC_SIZE DMA Command SIZE
This defines the size of a data transfer in beats.

0: 1 beat of data
1: 2 beats of data
...
1023: 1024 beats of data

R/W 0x0

8:3 DMAC_AM DMA Command AM
This is the VME address modifier used for this transfer.

R/W 0x0

2 DMAC_RWN DMA Command RWN
1: This is VME read operation
0: This is a VME write operation

R/W 0x0

1 DMAC_ABORT DMA Abort Request
1: Request a DMA abort
0: No action

R/W 0x0

0 DMAC_REQ DMA Transfer Request
1: Start a DMA transfer
0: No action

R/W 0x0

4.2.10. DMA Local Address Register: DMA_LADDR

VME Address Offset Local Bus Address
0x7F864 0x064

Bits Function Description R/W Reset
value

31:0 DMA_LADDR DMA Local Address [31:0]
This register contains the local address. The core does not
handle miss-aligned cycles or UAT cycles. Following limita-
tions apply:

– D16 transfers: DMA_LADDR[0] = 0
– D32 transfers: DMA_LADDR[1:0] = 0
– D64 transfers: DMA_LADDR[2:0] = 0

R/W 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 56

V M E S C m o d u l e D a t a s h e e t

4.2.11. DMA VME Address Register: DMA_VADDR

VME Address Offset Local Bus Address
0x7F860 0x060

Bits Function Description R/W Reset
value

31:0 DMA_VADDR DMA VME Address [31:0]
This register contains the VME address. The core does not
handle miss-aligned cycles or UAT cycles. Following limita-
tions apply:

– D16 transfers: DMA_VADDR[0] = 0
– D32 transfers: DMA_VADDR[1:0] = 0
– D64 transfers: DMA_VADDR[2:0] = 0

R/W 0x0

4.2.12. Mailbox Registers (1-4): MAILBOXn

VME Address Offset Local Bus Address
MBOX1: 0x7F85C 0x05C
MBOX2: 0x7F858 0x058
MBOX3: 0x7F854 0x054
MBOX4: 0x7F850 0x050

Bits Function Description R/W Reset
value

31:0 MBOXn Mailbox register n R/W 0x0

– Writing to the mailbox register will set the respective irq_mbox[n] interrupt source. If the
respective interrupt is enabled, a local bus interrupt is generated.

4.2.13. Semaphore Registers (0-3): SEMAPHORE

VME Address Offset Local Bus Address
0x7F840 0x040

Bits Function Description R/W Reset
value

31:24 SEMA3 Semaphore register 3
[31]: Semaphore bit 3
[30:24]: Semaphore tag 3

R/W 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 57

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

23:16 SEMA2 Semaphore register 2
[23]: Semaphore bit 2
[22:16]: Semaphore tag 2

R/W 0x0

15:8 SEMA1 Semaphore register 1
[15]: Semaphore bit 1
[14:8]: Semaphore tag 1

R/W 0x0

7:0 SEMA0 Semaphore register 0
[7]: Semaphore bit 0
[6:0]: Semaphore tag 0

R/W 0x0

– A semaphore can be set when the semaphore bit is zero
– Writing to the semaphore register with the semaphore bit being set has not effect
– A semaphore can be cleared by writing zero to the semaphore bit

4.2.14. VME Interrupter Map: VME_INT_MAP

VME Address Offset Local Bus Address
0x7F838 0x038

Bits Function Description R/W Reset
value

OthersRESERVED N/A R 0x0
9:8 VINT_TYPE Interrupter Type

0: D08(O) interrupter
1: D16 interrupter
2: D32 interrupter
3: N/A

Interrupter types 1 and 2 are only available when using the
advanced interrupter mode.

R/W 0x0

6:4 VINT_UIRQ User Interrupt Map R/W 0x0
2:0 VINT_SWIRQ Software Interrupt Map R/W 0x0

The interrupt map register is used to define which VME interrupt level and interrupter type is used
for a particular interrupt request. To generate a VME IRQ4* interrupt, set the map register to 0x4.
Setting the map register to 0x0 disables the particular interrupt source. If two interrupt requests
on the same level exists, the software interrupt request will be served first.
A D08(O) interrupter responds do 8, 16 and 32 bit interrupt acknowledge cycles. A D16 inter -
rupters responds to 16 and 32 bit acknowledge cycles. A D32 interrupter only responds to 32 bit
interrupt acknowledge cycles.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 58

V M E S C m o d u l e D a t a s h e e t

4.2.15. VME Interrupter STATUS/ID: VME_INT_STAT

The functionality of this register depends on the interrupter setting G_INTERRUPTER. The
simple interrupter is selected with G_INTERRUPTER = 0; the advanced interrupter with
G_INTERUPTER = 1.

VME Address Offset Local Bus Address
0x7F834 0x034

Bits Function Description R/W Reset
value

Simple Interrupter
31:8 RESERVED N/A R 0x0
7:1 VINT_STAT VME Interrupt STATUS/ID Register

Bit 7..1 of the STATUS/ID vector used during an IACK cycle.
R/W 0x0

0 VME Interrupt STATUS/ID Register, bit 0
Bit 0 of the STATUS/ID vector used during an IACK cycle.

0: Software IACK cycle
1: Hardware IACK cycle3

R 0x0

Advanced Interrupter
31:0 VINT_STAT VME Interrupt User STATUS/ID Register

This is the user interrupt STATUS/ID vector returned during
an IACK cycle. A D08(O) interrupter only drives bits 7:0, a
D16 interrupt drives bits 15:0 while a D32 drives all bits.

R/W 0x0

4.2.16. VME Interrupter STATUS/ID: VME_INT_STAT_SW

This register is only available when using the advanced interrupter mode.
VME Address Offset Local Bus Address

0x7F83C 0x03C

Bits Function Description R/W Reset
value

31:0 VINT_STAT_SW VME Interrupt Software STATUS/ID Register
This is the software interrupt STATUS/ID vector returned
during an IACK cycle. A D08(O) interrupter only drives bits
7:0, a D16 interrupt drives bits 15:0 while a D32 drives all
bits.

R/W 0x0

3 The current implementation only supports one hardware iack, the user interrupt request.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 59

V M E S C m o d u l e D a t a s h e e t

4.2.17. VME Interrupter: VME_INT

VME Address Offset Local Bus Address
0x7F830 0x030

Bits Function Description R/W Reset
value

31:1 RESERVED N/A R 0x0
0 VINT_SWIRQ VME Software Interrupt Request

This register is used to create a software interrupt request.
Write:

0: No action
1: Create software interrupt request

Read:
0: No software interrupt is pending
1: Software interrupt is pending

R/W 0x0

A software interrupt request is automatically acknowledged during an VME IACK cycle or by
writing 1 to the VIS_SWIRQ flag.

4.2.18. VME IRQn Status/ID: VME_IRQn_STAT

VME Address Offset Local Bus Address
VME_IRQ7_STAT 0x7F814 0x014
VME_IRQ6_STAT 0x7F818 0x018
VME_IRQ5_STAT 0x7F81C 0x01C
VME_IRQ4_STAT 0x7F820 0x020
VME_IRQ3_STAT 0x7F824 0x024
VME_IRQ2_STAT 0x7F828 0x028
VME_IRQ1_STAT 0x7F82C 0x02C

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 60

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

31:9
8

7:0

31:17
16

15:0

31:0

RESERVED
VINTHn_ERR
VINTHn_STAT

RESERVED
VINTHn_ERR
VINTHn_STAT

VINTHn_STAT

D08(O) cycle:
N/A
Asserted when IACK cycle caused bus error
STATUS/ID fetched during the IACK cycle for level n

D16 cycle:
N/A
Asserted when IACK cycle caused bus error
STATUS/ID fetched during the IACK cycle for level n

D32 cycle:
STATUS/ID fetched during the IACK cycle for level n

R
R
R

R
R
R

R

0x0
0x0
0x0

0x0
0x0
0x0

0x0

The VINTHn_ERR flag is visible in the VME_INT_CMD register too.

4.2.19. VME Interrupt Handler Command: VME_INT_CMD

VME Address Offset Local Bus Address
0x7F810 0x010

Bits Function Description R/W Reset
value

31:10 RESERVED N/A R 0x0
9:8 VINTH_TYPE Interrupt vector type

This defines what type of interrupt status/ID is fetched during
an IACK cycle.

0: D08(O)
1: D16
2: D32
3: Not valid

R/W 0x0

7 RESERVED N/A R 0x0
6 VINTH1_ERR Error status for interrupt service level 1

0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

5 VINTH2_ERR Error status for interrupt service level 2
0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

4 VINTH3_ERR Error status for interrupt service level 3
0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 61

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

3 VINTH4_ERR Error status for interrupt service level 4
0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

2 VINTH5_ERR Error status for interrupt service level 5
0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

1 VINTH6_ERR Error status for interrupt service level 6
0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

0 VINTH7_ERR Error status for interrupt service level 7
0: IACK cycle was successful
1: IACK cycle was terminated with a bus error

R 0x0

4.2.20. VME Interrupt Status Register: VINT_STATUS

VME Address Offset Local Bus Address
0x7F80C 0x00C

Bits Function Description R/W Reset
value

1 VIS_UIRQ VME User Interrupt Request Status
1: User interrupt request is pending
0: User interrupt request is not pending

R/W 0x0

0 VIS_SWIRQ VME Software Interrupt Request Status
1: Software interrupt request is pending
0: Software interrupt request is not pending

R/W 0x0

The VME interrupt status registers are accessed from the VME side to clear a pending interrupt
request. VIS_SWIRQ is automatically cleared during a VME IACK cycle (ROAK) while VIS_UIRQ
has to be cleared as part of the interrupt service routine (RORA). Since VIS_UIRQ is the result of
an external interrupt request, the external interrupt source register needs to be cleared prior to
clearing the VIS_UIRQ bit.

– If an interrupt source is pending, the respective interrupt status flag reads one.
– To clear an interrupt status flag, write a one to the respective bit to be cleared.
– The interrupt status bits are independent of the interrupt enable bits.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 62

V M E S C m o d u l e D a t a s h e e t

4.2.21. VME Interrupt Enable Register: VINT_EBL

VME Address Offset Local Bus Address
0x7F808 0x008

Bits Function Description R/W Reset
value

1 VIE_UIRQ VME User Interrupt Request Enable
1: User interrupt request is enabled
0: User interrupt request is not enabled

R/W 0x0

0 VIE_SWIRQ VME Software Interrupt Request Enable
1: Software interrupt request is enabled
0: Software interrupt request is not enabled

R/W 0x0

– The interrupt enable bits are used to generate the VME interrupt request

4.2.22. Interrupt Status Register: INT_STATUS

VME Address Offset Local Bus Address
0x7F804 0x004

Bits Function Description R/W Reset
value

17 IS_MBOX3 Mailbox 3 Interrupt Status
A VME write to mailbox 3 was detected.

R/W 0x0

16 IS_MBOX2 Mailbox 2 Interrupt Status
A VME write to mailbox 2 was detected.

R/W 0x0

15 IS_MBOX1 Mailbox 1 Interrupt Status
A VME write to mailbox 1 was detected.

R/W 0x0

14 IS_MBOX0 Mailbox 0 Interrupt Status
A VME write to mailbox 0 was detected.

R/W 0x0

13 IS_VTIMER VME Arbiter Timer Error Status
A VME arbiter timeout error happened.

R/W 0x0

12 IS_VBERR VME Bus Error Interrupt Status
The bus timer expired or the VME BERR was asserted to
terminate the current cycle.

R/W 0x0

11 IS_DMAERR DMA Error Interrupt Status
When set, a DMA operation was aborted due to an error.

R/W 0x0

10 IS_DMADONE DMA Done Interrupt Status
The requested DMA operation completed successfully.

R/W 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 63

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

9 IS_SWIACK VME Software Interrupt Acknowledge Status
This bit is set when the software IRQ from the VME inter-
rupter has been served.

R/W 0x0

8 IS_IRQ1 VME Interrupt Request 1 Status
This bit is set when the VME interrupt level 1 was served.

R/W 0x0

7 IS_IRQ2 VME Interrupt Request 2 Status
This bit is set when the VME interrupt level 2 was served.

R/W 0x0

6 IS_IRQ3 VME Interrupt Request 3 Status
This bit is set when the VME interrupt level 3 was served.

R/W 0x0

5 IS_IRQ4 VME Interrupt Request 4 Status
This bit is set when the VME interrupt level 4 was served.

R/W 0x0

4 IS_IRQ5 VME Interrupt Request 5 Status
This bit is set when the VME interrupt level 5 was served.

R/W 0x0

3 IS_IRQ6 VME Interrupt Request 6 Status
This bit is set when the VME interrupt level 6 was served.

R/W 0x0

2 IS_IRQ7 VME Interrupt Request 7 Status
This bit is set when the VME interrupt level 7 was served.

R/W 0x0

1 IS_SYSFAIL VME SYSFAIL Interrupt Status
This bit is set if the VME SYSFAIL input is asserted.

R/W 0x0

0 IS_ACFAIL VME ACFAIL Interrupt Status
This bit is set if the VME ACFAIL input is asserted.

R/W 0x0

– If an interrupt source is pending, the respective interrupt status flag reads one.
– To clear an interrupt status flag, write a one to the respective bit to be cleared.
– The interrupt status bits are independent of the interrupt enable bits except for the

IS_IRQn bits. IS_IRQn is only updated when the respective IE_IRQn register is set.

4.2.23. Interrupt Enable Register: INT_EBL

VME Address Offset Local Bus Address
0x7F800 0x000

Bits Function Description R/W Reset
value

17 IE_MBOX3 Mailbox 3 Interrupt Enable R/W 0x0
16 IE_MBOX2 Mailbox 2 Interrupt Enable R/W 0x0
15 IE_MBOX1 Mailbox 1 Interrupt Enable R/W 0x0
14 IE_MBOX0 Mailbox 0 Interrupt Enable R/W 0x0
13 IE_VTIMER VME Arbiter Timer Error Enable R/W 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 64

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

12 IE_VBERR VME Bus Error Interrupt Enable R/W 0x0
11 IE_DMAERR DMA Error Interrupt Enable R/W 0x0
10 IE_DMADONE DMA Done Interrupt Enable R/W 0x0
9 IE_SWIACK VME Software Interrupt Acknowledge Enable R/W 0x0
8 IE_IRQ1 VME Interrupt Request 1 Enable

1: VME interrupt level 1 is served
0: VME interrupt level 1 is not served

R/W 0x0

7 IE_IRQ2 VME Interrupt Request 2 Enable
1: VME interrupt level 2 is served
0: VME interrupt level 2 is not served

R/W 0x0

6 IE_IRQ3 VME Interrupt Request 3 Enable
1: VME interrupt level 3 is served
0: VME interrupt level 3 is not served

R/W 0x0

5 IE_IRQ4 VME Interrupt Request 4 Enable
1: VME interrupt level 4 is served
0: VME interrupt level 4 is not served

R/W 0x0

4 IE_IRQ5 VME Interrupt Request 5 Enable
1: VME interrupt level 5 is served
0: VME interrupt level 5 is not served

R/W 0x0

3 IE_IRQ6 VME Interrupt Request 6 Enable
1: VME interrupt level 6 is served
0: VME interrupt level 6 is not served

R/W 0x0

2 IE_IRQ7 VME Interrupt Request 7 Enable
1: VME interrupt level 7 is served
0: VME interrupt level 7 is not served

R/W 0x0

1 IE_SYSFAIL VME SYSFAIL Interrupt Enable R/W 0x0
0 IE_ACFAIL VME ACFAIL Interrupt Enable R/W 0x0

– The interrupt enable bits are used to generate the external interrupt request to the CPU.
– To enable an interrupt, set its respective enable bit to one, set it to zero to disable it.
– When set, the IE_IRQn bits enable the interrupt handler for the respective interrupt level.

4.2.24. Function N Address Decoder Compare (ADER) Register

VME
Address

Local Bus
Address

Bits Name Description

0x7FFDC 0x79C 31:24 CSR_ADER8[7:0] Function 8 Address Decoder Compare Register
0x7FFD8 0x798 31:24 CSR_ADER8[15:8]
0x7FFD4 0x794 31:24 CSR_ADER8[23:16]
0x7FFD0 0x793 31:24 CSR_ADER8[31:24]
0x7FFCC 0x79C 31:24 CSR_ADER7[7:0] Function 7 Address Decoder Compare Register

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 65

V M E S C m o d u l e D a t a s h e e t

VME
Address

Local Bus
Address

Bits Name Description

0x7FFC8 0x798 31:24 CSR_ADER7[15:8]
0x7FFC4 0x794 31:24 CSR_ADER7[23:16]
0x7FFC0 0x793 31:24 CSR_ADER7[31:24]
0x7FFBC 0x79C 31:24 CSR_ADER6[7:0] Function 6 Address Decoder Compare Register
0x7FFB8 0x798 31:24 CSR_ADER6[15:8]
0x7FFB4 0x794 31:24 CSR_ADER6[23:16]
0x7FFB0 0x793 31:24 CSR_ADER6[31:24]
0x7FFAC 0x79C 31:24 CSR_ADER5[7:0] Function 5 Address Decoder Compare Register
0x7FFA8 0x798 31:24 CSR_ADER5[15:8]
0x7FFA4 0x794 31:24 CSR_ADER5[23:16]
0x7FFA0 0x793 31:24 CSR_ADER5[31:24]
0x7FF9C 0x79C 31:24 CSR_ADER4[7:0] Function 4 Address Decoder Compare Register
0x7FF98 0x798 31:24 CSR_ADER4[15:8]
0x7FF94 0x794 31:24 CSR_ADER4[23:16]
0x7FF90 0x793 31:24 CSR_ADER4[31:24]
0x7FF8C 0x78C 31:24 CSR_ADER3[7:0] Function 3 Address Decoder Compare Register
0x7FF88 0x788 31:24 CSR_ADER3[15:8]
0x7FF84 0x784 31:24 CSR_ADER3[23:16]
0x7FF80 0x783 31:24 CSR_ADER3[31:24]
0x7FF7C 0x77C 31:24 CSR_ADER2[7:0] Function 2 Address Decoder Compare Register
0x7FF78 0x778 31:24 CSR_ADER2[15:8]
0x7FF74 0x774 31:24 CSR_ADER2[23:16]
0x7FF70 0x773 31:24 CSR_ADER2[31:24]
0x7FF6C 0x76C 31:24 CSR_ADER1[7:0] Function 1 Address Decoder Compare Register
0x7FF68 0x768 31:24 CSR_ADER1[15:8]
0x7FF64 0x764 31:24 CSR_ADER1[23:16]
0x7FF60 0x763 31:24 CSR_ADER1[31:24]
0x7FF60

-
0x7FF9C

0x763
-

0x79C

23:0 RESERVED Reading back from these reserved bits will return
zero.

Following table shows the functionality of the different CSR_ADER bits:

Bits Function Description R/W Reset
value

31:8 C[31:8] Address bus compare bits R/W –
7:2 AM[5:0] Address modifier compare bits R 0x0

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 66

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

1 DFSR Dynamic Function Size Read
If dynamic function sizing is supported (SLVW_DFS = 1),
this bit is used to read the address decoder mask
(VSLW_ADEM) register using the CSR_ADER[31:8] bit loca-
tions.
Write

1: CSR_ADER[31:8] latches VSLW_ADEM[31:8]4

0: No action
Read:

1: CSR_ADER[31:8]
0: CSR_ADER[31:8]

If dynamic function sizing is not supported (SLVW_DFS = 0)
writing to this register has no effect. Once VSLW_ADEM is
latched into CSR_ADER and read, the register needs to
restored to its original content.

R/W 0x0

0 XAM XAM mode
The VMESCmodule doesn't support A64 addressing mode.
Setting this bit has no effect.

R 0x0

– The C and AM bits are read-only when the VMESCmodule is configured for fixed-address
function (SLVW_FAF = 1). In this case CR_ADER must be configured before setting the
SLVW_FAF bit!

4 The content of VSLW_ADEM[31:8] is stored in a shadow register that is displayed when reading form
CSR_ADER while its DFSR bit is set. The content of CSR_ADER[31:8] is not modified.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 67

V M E S C m o d u l e D a t a s h e e t

4.2.25. User-Defi ned Bit Set Register: UDBIT_SET

VME Address Offset Local Bus Address
CRBAR + 0x7FFFE8 0x7E8

Bits Function Description R/W Reset
value

31 UBITSET.7 User bit set register 7
Write:

1: Assert user_bit_set_event[7] output for one clock cycle
0: No action

Read:
1: user_bit_status[7] input is high
0: user_bit_status[7] input is low

R/W –

30 UBITSET.6 User bit set register 6 R/W –
29 UBITSET.5 User bit set register 5 R/W –
28 UBITSET.4 User bit set register 4 R/W –
27 UBITSET.3 User bit set register 3 R/W –
26 UBITSET.2 User bit set register 2 R/W –
25 UBITSET.1 User bit set register 1 R/W –
24 UBITSET.0 User bit set register 0 R/W –

23:0 RESERVED N/A R 0x0

4.2.26. User-Defi ned Bit Clear Register: UBIT_CLEAR

VME Address Offset Local Bus Address
CRBAR + 0x7FFFEC 0x7EC

Bits Function Description R/W Reset
value

31 UBITCLR.7 User bit clear register 7
Write:

1: Assert user_bit_clear_event[7] output for one clock
 cycle
0: No action

Read:
1: user_bit_status[7] input is high
0: user_bit_status[7] input is low

R/W –

30 UBITCLR.6 User bit clear register 6 R/W –
29 UBITCLR.5 User bit clear register 5 R/W –
28 UBITCLR.4 User bit clear register 4 R/W –

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 68

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

27 UBITCLR.3 User bit clear register 3 R/W –
26 UBITCLR.2 User bit clear register 2 R/W –
25 UBITCLR.1 User bit clear register 1 R/W –
24 UBITCLR.0 User bit clear register 0 R/W –

23:0 RESERVED N/A R 0x0

4.2.27. CRAM Owner Register:CRAM_OWNER

VME Address Offset Local Bus Address
CRBAR + 0x7FFFF0 0x7F0

Bits Function Description R/W Reset
value

31:24 CRAM_OWN CRAM Owner Register
This register implements a simple semaphore that prevents
a user-write while it contains a non-zero value.

R/W 0x0

23:0 RESERVED N/A R 0x0

– The CRAM_OWNER register can only be set when it is zero
– Writing to this register while it contains a non-zero value has no effect
– This register is cleared by setting the BIT_CLEAR.CRAMOC flag

4.2.28. CSR Bit Clear Register: BIT_CLEAR

VME Address Offset Local Bus Address
CRBAR + 0x7FFFF4 0x7F4

Bits Function Description R/W Reset
value

31 LRSTC Local Reset Clear5

Write:
1: Releases user_reset_n
0: No action

Read:
1: user_reset_n is asserted
0: user_reset_n is not asserted

R/W 0x0

5 Minimum assertion time for user_reset_n is 200ms.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 69

V M E S C m o d u l e D a t a s h e e t

Bits Function Description R/W Reset
value

30 SDEC SYSFAIL Driver Enable Clear
Write:

1: Releases VSYSFAIL_O_N
0: No action

Read:
1: VSYSFAIL_O_N is asserted
0: VSYSFAIL_O_N is not asserted

R/W 0x0

29 RESERVED N/A R 0x0
28 MODEBLC Module Enable Set

Write:
1: Disable slave window access
0: No action

Read:
1: Module enabled
0: Module not enabled

R/W 0x0

27 BERRSC Bus Error Status Clear
1: Clears the bus error status bit (user_reset_n=1)
0: No action

R/W 0x0

26 CRAMOC CRAM Owner Clear
Write:

1: Clear CRAM owned flag
0: No action

Read:
1: CRAM owned
0: CRAM available

When the CRAM_OWNER register contains a non-zero
value, the CRAM is 'owned' and reading this register returns
1. Writing 1 to this register clears the CRAM_OWNER
register.

R/W 0x0

25:0 RESERVED N/A R 0x0

Note:
– Reading back will return the current state and not the last written value!
– BERRSC: This bit is set when the VMESCmodule drives the VME BERR*. Writing a one

clears the Bus Error Status Bit.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 70

V M E S C m o d u l e D a t a s h e e t

4.2.29. CSR Bit Set Register: BIT_SET

VME Address Offset Local Bus Address
CRBAR + 0x7FFF8 0x7F8

Bits Function Description R/W Reset
value

31 LRSTS Local Reset Set2

Write:
1: Asserts user_reset_n=0
0: No action

Read:
1: user_reset_n is asserted
0: user_reset_n is not asserted

R/W 0x0

30 SDES SYSFAIL Driver Enable Set
Write:

1: Asserts VSYSFAIL_O_N
0: No action

Read:
1: VSYSFAIL_O_N is asserted
0: VSYSFAIL_O_N is not asserted

R/W 0x0

29 RESERVED N/A R 0x0
28 MODEBLS Module Enable Set

Write:
1: Enable slave window access
0: No action

Read:
1: Module enabled
0: Module not enabled

R/W 0x0

27 BERRSS Bus Error Status Set
1: Sets the bus error status bit
0: No action

R/W 0x0

26 CRAMOS CRAM Owner Set
Read:

1: CRAM owned
0: CRAM available

When the CRAM_OWNER register contains a non-zero
value, the CRAM is 'owned' and reading this register returns
1. This register is read-only.

R 0x0

25:0 RESERVED N/A R 0x0

Note:
– Reading back will return the current state and not the last written value!
– BERRSS: This bit is set when the VMESCmodule drives the VME BERR*. Writing a one

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 71

V M E S C m o d u l e D a t a s h e e t

sets the Bus Error Status Bit.

4.2.30. CSR Base Register: CRBAR

VME Address Offset Local Bus Address
CRBAR + 0x7FFFC 0x7FC

Bits Function Description R/W Reset
value

31:27 CRBAR CR/CSR Base Address R/W -
26:0 RESERVED N/A R 0x0

Note:
– The CRBAR register is initialized based upon the value read from the geographical

address pins (VGA_N). This value can be changed by software.
– CRBAR is compared with VA[23:19] to determine if the board is selected by the current

VME transfer.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 72

V M E S C m o d u l e D a t a s h e e t

A bo u t In i c or e

FPGA and ASIC Design
Easy-to-use IP Cores
System-on-Chip Solutions
Consulting Services
ASIC to FPGA Migration
Obsolete ASIC Replacements

Inicore is an experienced system design house providing FPGA / ASIC and SoC design services.
The company's expertise in architecture, intellectual property, methodology and tool handling
provides a complete design environment that helps customers shorten their design cycle and
speed time to market. Our offering covers feasibility study, concept analysis, architecture defini -
tion, code generation and implementation. When ready, we deliver you a FPGA or take your
design to an ASIC provider, whatever is more suitable for your unique solution.
Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module solution.
Our experience and fast turnaround time reduces your development costs and increases your
returns from the market. Your system is not limited by the level of expertise and standard chip
solutions you happen to have in-house. Achieve market success by differentiating and optimizing
your product. Reusability builds the basis for further developments in the ever-decreasing product
life cycle.

Visit us @ www.inicore.com

INICORE INC. has made every attempt to ensure that the information in this document is accurate and complete.
However, INICORE INC. assumes no responsibility for any errors, omissions, or for any consequences resulting from the
information included in this document or the equipments it accompanies. INICORE INC. reserves the right to make
changes in its products and specifications at any time without notice.
Copyright © 2009-2015, INICORE INC. All rights reserved.

Copyright © 2009-2015, Inicore Inc. Programmers Guide - Page 73

	1. Overview
	1.1. Features
	1.2. Deliverables
	1.3. Functional Description
	1.3.1. VME Master
	1.3.2. DMA Handler
	VME write operation
	VME Read operation

	1.3.3. VME Slave
	VME Slave Window
	Example
	Enhanced Address Window Decoding

	1.3.4. VME Bus Requester
	1.3.5. VME System Controller
	Bus arbiter
	Interrupt daisy-chain driver

	1.3.6. Utility Functions
	Bus timer
	System Clock Driver
	System Reset Driver
	System Failure Diagnostics
	First Slot Detector

	1.3.7. Interrupt Handling
	VME Bus Interrupter
	VME Bus Interrupt Handler
	Interrupt Controller

	1.3.8. Control and Status Registers
	1.3.9. Mailbox Registers
	1.3.10. Semaphores
	1.3.11. Registers
	Memory Mapping
	Endian Selection

	1.3.12. Reset Logic
	1.3.13. System Clock

	2. Signal Description
	2.1. Global Signals
	2.2. VME Bus Signals
	2.3. VMEbus signals external buffering example
	2.4. User Side Interfaces
	2.4.1. Special purpose User side Signals
	2.4.2. Local Bus Master Port
	Local Bus Master Port write cycle
	Local bus Master Port read cycle
	Local bus Master Port read-Modify-Write Cycle

	2.4.3. Local Bus Slave Port
	Local Bus Slave Port CSR Write Cycle
	Local Bus Slave Port CSR Read Cycle

	2.4.4. VME Access Cycles
	Local Bus Slave Port VME Read Cycle
	Local Bus Slave Port VME Read Cycle with Bus Error
	Local Bus Slave Port VME Read-Modify-Write Cycle
	Auto-DTACK

	3. Core Configuration
	3.1. Rescinding DTACK

	4. Programmers Guide
	4.1. Internal CSR Memory Space
	4.2. Description of Registers
	4.2.1. Device Control Register: DEV_CTRL
	4.2.2. Device Version: DEV_VER
	4.2.3. System Controller: SYS_CTRL
	4.2.4. VME Master Controller: VME_MSTR
	4.2.5. Slave Access Decoding (1-8): SVL_ACC_DECn
	4.2.6. Slave Access Address Decoder Compare Register (1-8): SLV_ACC_CMPn
	4.2.7. Slave Access Address Decoder Mask Register (1-8): SLV_ACC_MSKn
	4.2.8. DMA Status Register: DMA_STAT
	4.2.9. DMA Command Register: DMA_CMD
	4.2.10. DMA Local Address Register: DMA_LADDR
	4.2.11. DMA VME Address Register: DMA_VADDR
	4.2.12. Mailbox Registers (1-4): MAILBOXn
	4.2.13. Semaphore Registers (0-3): SEMAPHORE
	4.2.14. VME Interrupter Map: VME_INT_MAP
	4.2.15. VME Interrupter STATUS/ID: VME_INT_STAT
	4.2.16. VME Interrupter STATUS/ID: VME_INT_STAT_SW
	4.2.17. VME Interrupter: VME_INT
	4.2.18. VME IRQn Status/ID: VME_IRQn_STAT
	4.2.19. VME Interrupt Handler Command: VME_INT_CMD
	4.2.20. VME Interrupt Status Register: VINT_STATUS
	4.2.21. VME Interrupt Enable Register: VINT_EBL
	4.2.22. Interrupt Status Register: INT_STATUS
	4.2.23. Interrupt Enable Register: INT_EBL
	4.2.24. Function n Address Decoder Compare (ADER) Register
	4.2.25. User-Defined Bit Set Register: UDBIT_SET
	4.2.26. User-Defined Bit Clear Register: UBIT_CLEAR
	4.2.27. CRAM Owner register:CRAM_OWNER
	4.2.28. CSR Bit Clear Register: BIT_CLEAR
	4.2.29. CSR Bit Set Register: BIT_SET
	4.2.30. CSR Base Register: CRBAR

