
 D atasheet

VME64S

VME SLAVE CONTROLLER

Version 3.0.4

INICORE INC.
2339 Third Street #51
San Francisco, CA 94107
t: 510 445 1529 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 1 - 2 0 2 4 IN IC O R E IN C .

 D atasheet

VME64S

VME SLAVE CONTROLLER

Version 3.0.4

INICORE INC.
2339 Third Street #51
San Francisco, CA 94107
t: 510 445 1529 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 1 - 2 0 2 4 IN IC O R E IN C .

http://www.inicore.com/

V M E 6 4 S D a ta s h e e t

Ta b le o f C o n te n ts

1 OVERVIEW... 5

1.1 Features.. 5

1.2 Deliverables.. 5

1.3 Block Diagram.. 6

1.4 Implementation Options.. 6

2 INTERFACE SIGNAL DESCRIPTION... 7

2.1 VME Slave Controller I/Os... 7
2.1.1 VME64S Core I/Os... 7
2.1.2 VME64S_A32D32 Core I/Os.. 8
2.1.3 VME64S_A24D32 Core I/Os.. 9
2.1.4 VME64S_A24D16 Core I/Os.. 10

2.2 Signal Description.. 11
2.2.1 General Inputs... 11
2.2.2 VME Bus... 11

2.3 User Side Interface.. 12
2.3.1 Local Bus Interface... 12
Local bus write cycle timing diagram.. 14
Local bus read cycle timing diagram... 14
2.3.2 Slave Access Decoder.. 15
User access decoder timing diagram.. 16
Example Access Decode Table... 17
2.3.3 Interrupter... 17
Interrupt Acknowledge Cycles... 18
Interrupt Scheme.. 18
2.3.4 Rescinding DTACK... 20

2.4 Configuration Parameters... 21

3 APPENDIX.. 22

3.1 Selecting proper I/O drivers.. 22

Copyright © 2001 - 2024 Inicore Inc. Indexes - Page II

V M E 6 4 S D a ta s h e e t

Ta b le o f C o n te n ts

1 OVERVIEW... 5

1.1 Features.. 5

1.2 Deliverables.. 5

1.3 Block Diagram.. 6

1.4 Implementation Options.. 6

2 INTERFACE SIGNAL DESCRIPTION... 7

2.1 VME Slave Controller I/Os... 7
2.1.1 VME64S Core I/Os... 7
2.1.2 VME64S_A32D32 Core I/Os.. 8
2.1.3 VME64S_A24D32 Core I/Os.. 9
2.1.4 VME64S_A24D16 Core I/Os.. 10

2.2 Signal Description.. 11
2.2.1 General Inputs... 11
2.2.2 VME Bus... 11

2.3 User Side Interface.. 12
2.3.1 Local Bus Interface... 12
Local bus write cycle timing diagram.. 14
Local bus read cycle timing diagram... 14
2.3.2 Slave Access Decoder.. 15
User access decoder timing diagram.. 16
Example Access Decode Table... 17
2.3.3 Interrupter... 17
Interrupt Acknowledge Cycles... 18
Interrupt Scheme.. 18
2.3.4 Rescinding DTACK... 20

2.4 Configuration Parameters... 21

3 APPENDIX.. 22

3.1 Selecting proper I/O drivers.. 22

Copyright © 2001 - 2024 Inicore Inc. Indexes - Page II

V M E 6 4 S D a ta s h e e t

3.2 Connections to external transceivers.. 23
Address Bus Driver... 23
Data Bus Driver... 23

4 REFERENCES... 24

Table of Figures
Figure 1: Block Diagram VME64S Slave Core.. 6
Figure 2: Inputs and Outputs of VME64S Core... 7
Figure 3: Inputs and Outputs of VME64S_A32D32 Core.. 8
Figure 4: Inputs and Outputs of VME64S_A24D32 Core.. 9
Figure 5: Inputs and Outputs of VME64S_A24D16 Core.. 10
Figure 6: User write cycle with different wait-states... 14
Figure 7: User read cycle with different wait-states... 14
Figure 8: User-access decoder operation.. 16
Figure 9: ROAK interrupting scheme... 19
Figure 10: RORA interrupting scheme... 19
Figure 11: Open-collector DTACK*.. 20
Figure 12: Rescinding DTACK*.. 20
Figure 13: VME address bus transceiver... 23
Figure 14: VME data bus transceiver... 23

Copyright © 2001 - 2024 Inicore Inc. Indexes - Page III

V M E 6 4 S D a ta s h e e t

3.2 Connections to external transceivers.. 23
Address Bus Driver... 23
Data Bus Driver... 23

4 REFERENCES... 24

Table of Figures
Figure 1: Block Diagram VME64S Slave Core.. 6
Figure 2: Inputs and Outputs of VME64S Core... 7
Figure 3: Inputs and Outputs of VME64S_A32D32 Core.. 8
Figure 4: Inputs and Outputs of VME64S_A24D32 Core.. 9
Figure 5: Inputs and Outputs of VME64S_A24D16 Core.. 10
Figure 6: User write cycle with different wait-states... 14
Figure 7: User read cycle with different wait-states... 14
Figure 8: User-access decoder operation.. 16
Figure 9: ROAK interrupting scheme... 19
Figure 10: RORA interrupting scheme... 19
Figure 11: Open-collector DTACK*.. 20
Figure 12: Rescinding DTACK*.. 20
Figure 13: VME address bus transceiver... 23
Figure 14: VME data bus transceiver... 23

Copyright © 2001 - 2024 Inicore Inc. Indexes - Page III

V M E 6 4 S D a ta s h e e t

R e v is io n H is to ry

Version Comment
3.0.4 • Document formatting updates
3.0.3 • Removed faulty info about user-side data bus width setting, page 21
3.0.2 • Inconsistency in signal names corrected
3.0.1 • Added missing vme_berr_n input
3.0 • Global document update to reflect new top-level wrappers for A24D16,

A24D32, and A32D32 targets.
• Updated signal waveforms
• Added user access decode example

D efi n it io n o f Term s

Following conventions are used in this document:
• Signals ending with ‘_n’ are active low.
• Signals containing a '_int_' are internal signals between the VME core and the

FPGA/ASIC I/O buffer.

Copyright © 2001 - 2024 Inicore Inc. Indexes - Page IV

V M E 6 4 S D a ta s h e e t

R e v is io n H is to ry

Version Comment
3.0.4 • Document formatting updates
3.0.3 • Removed faulty info about user-side data bus width setting, page 21
3.0.2 • Inconsistency in signal names corrected
3.0.1 • Added missing vme_berr_n input
3.0 • Global document update to reflect new top-level wrappers for A24D16,

A24D32, and A32D32 targets.
• Updated signal waveforms
• Added user access decode example

D efi n it io n o f Term s

Following conventions are used in this document:
• Signals ending with ‘_n’ are active low.
• Signals containing a '_int_' are internal signals between the VME core and the

FPGA/ASIC I/O buffer.

Copyright © 2001 - 2024 Inicore Inc. Indexes - Page IV

V M E 6 4 S D a ta s h e e t

1 O v e rv ie w

This VME64 slave controller is designed for custom integration using standard FPGA and
ASIC technologies. It is fully compliant to the VME specification supporting A16/A24/A32
address mode, D8/D16/D32 data modes (read/write/read-modify-write), D16-BLT, D32-BLT,
D64-MBLT, as well as interrupt acknowledge cycles. VMEbus timing is guaranteed by using a
system clock of 40 MHz or higher. A synchronous design approach is used to simplify
interfacing to the asynchronous VMEbus. The user side interface is full synchronous. Data
access is either single cycle or multi-cycle controlled through user wait states.
To support VME slave controller implementations that do not require the full 32-bit address
and data bus width, different top-levels are available. Features such as BLT and MBLT can
individually be selected to achieve gate-count optimized implementations.

1.1 Features
Following special features are available:

 Data modes: D8, D16, D16-BLT, D32, D32-BLT, D64-MBLT
 Address modes: A16, A24, A32

 Access modes: Read, write, read-modify-write

 Selectable rescinding DTACK

 Configurable D8, D16, or D32 interrupter

 Selectable little/big endian conversion

 Full synchronous user side interface for registers, peripherals, and memories

 User selectable wait-states

1.2 Deliverables
 RTL code
 Self-verifying system-level testbench
 Synthesis information
 User guide

Copyright © 2001 - 2024 Inicore Inc. Overview - Page 5

V M E 6 4 S D a ta s h e e t

1 O v e rv ie w

This VME64 slave controller is designed for custom integration using standard FPGA and
ASIC technologies. It is fully compliant to the VME specification supporting A16/A24/A32
address mode, D8/D16/D32 data modes (read/write/read-modify-write), D16-BLT, D32-BLT,
D64-MBLT, as well as interrupt acknowledge cycles. VMEbus timing is guaranteed by using a
system clock of 40 MHz or higher. A synchronous design approach is used to simplify
interfacing to the asynchronous VMEbus. The user side interface is full synchronous. Data
access is either single cycle or multi-cycle controlled through user wait states.
To support VME slave controller implementations that do not require the full 32-bit address
and data bus width, different top-levels are available. Features such as BLT and MBLT can
individually be selected to achieve gate-count optimized implementations.

1.1 Features
Following special features are available:

 Data modes: D8, D16, D16-BLT, D32, D32-BLT, D64-MBLT
 Address modes: A16, A24, A32

 Access modes: Read, write, read-modify-write

 Selectable rescinding DTACK

 Configurable D8, D16, or D32 interrupter

 Selectable little/big endian conversion

 Full synchronous user side interface for registers, peripherals, and memories

 User selectable wait-states

1.2 Deliverables
 RTL code
 Self-verifying system-level testbench
 Synthesis information
 User guide

Copyright © 2001 - 2024 Inicore Inc. Overview - Page 5

V M E 6 4 S D a ta s h e e t

1.3 Block Diagram
Following figure shows the main building block of the VME64S core complemented with some
typical user logic modules:

1.4 Im plem entation Options
Several different top-level modules are provided to support gate-count optimized
implementations. Following table shows the supported feature set of each module.

A
16

A
24

A
32

D
8

D
16

D
32

D
64

B
LT

M
B
L
T

R
M
W

R
O
A
K

R
O
R
A

D
T
A
C
K

VME64S ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VME64S_A32D32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VME64S_A24D32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VME64S_A24D16 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Copyright © 2001 - 2024 Inicore Inc. Overview - Page 6

Figure 1: Block Diagram VME64S Slave Core

VM
E

B
us

 In
te

rf
ac

e

Slave

Interrupter

Int
err
up
ter

Lo
ca

l B
us

In
te

rf
ac

e

VME
Bus

Local
Bus

Interrupt
Controller

Int
err
up
t

Co
ntr
oll
er user decode

V M E 6 4 S D a ta s h e e t

1.3 Block Diagram
Following figure shows the main building block of the VME64S core complemented with some
typical user logic modules:

1.4 Im plem entation Options
Several different top-level modules are provided to support gate-count optimized
implementations. Following table shows the supported feature set of each module.

A
16

A
24

A
32

D
8

D
16

D
32

D
64

B
LT

M
B
L
T

R
M
W

R
O
A
K

R
O
R
A

D
T
A
C
K

VME64S ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VME64S_A32D32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VME64S_A24D32 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
VME64S_A24D16 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Copyright © 2001 - 2024 Inicore Inc. Overview - Page 6

Figure 1: Block Diagram VME64S Slave Core

VM
E

B
us

 In
te

rf
ac

e

Slave

Interrupter

Int
err
up
ter

Lo
ca

l B
us

In
te

rf
ac

e

VME
Bus

Local
Bus

Interrupt
Controller

Int
err
up
t

Co
ntr
oll
er user decode

V M E 6 4 S D a ta s h e e t

2 In te r fa c e S ig n a l D e s c r ip tio n

2.1 VME Slave Controller I/O s
2.1 .1 VME64S Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 7

Figure 2: Inputs and Outputs of VME64S Core

VME64S

vme_ext_ddrv_n

vme_data_out[31:0]

vme_ext_adir

user_addr[31:2]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

clk

vme_data_in[31:0]

vme_addr_in[31:1]
vme_addr_out[31:1]
vme_am[5:0]

vme_ext_ddir

vme_ext_adrv_n

vme_int_ddrv_n

vme_int_adrv_n

vme_lword_n_in

vme_lword_n_out

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[3:0]

user_data_out[31:0]

user_data_in[31:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[31:1]

user_access_ebl

user_access_blt

user_access_mblt

V
M

Eb
us

 s
ig

na
ls

vme_berr_n

vme_irq_n[6:0] user_access_addr_inc

reset_n

V M E 6 4 S D a ta s h e e t

2 In te r fa c e S ig n a l D e s c r ip tio n

2.1 VME Slave Controller I/O s
2.1 .1 VME64S Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 7

Figure 2: Inputs and Outputs of VME64S Core

VME64S

vme_ext_ddrv_n

vme_data_out[31:0]

vme_ext_adir

user_addr[31:2]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

clk

vme_data_in[31:0]

vme_addr_in[31:1]
vme_addr_out[31:1]
vme_am[5:0]

vme_ext_ddir

vme_ext_adrv_n

vme_int_ddrv_n

vme_int_adrv_n

vme_lword_n_in

vme_lword_n_out

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[3:0]

user_data_out[31:0]

user_data_in[31:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[31:1]

user_access_ebl

user_access_blt

user_access_mblt

V
M

Eb
us

 s
ig

na
ls

vme_berr_n

vme_irq_n[6:0] user_access_addr_inc

reset_n

V M E 6 4 S D a ta s h e e t

2.1 .2 VME64S_A32D32 Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 8

Figure 3: Inputs and Outputs of VME64S_A32D32 Core

VME64S_A32D32

vme_ext_ddrv_n

vme_data_out[31:0]

user_addr[31:2]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

reset_n

vme_data_in[31:0]

vme_addr_in[31:1]

vme_am[5:0]

vme_ext_ddir

vme_int_ddrv_n

vme_lword_n_in

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[3:0]

user_dat_out[31:0]

user_data_in[31:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[31:1]

user_access_ebl

user_access_blt

V
M

Eb
us

 s
ig

na
ls

clk

vme_irq_n[6:0]

user_access_addr_inc

vme_berr_n

V M E 6 4 S D a ta s h e e t

2.1 .2 VME64S_A32D32 Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 8

Figure 3: Inputs and Outputs of VME64S_A32D32 Core

VME64S_A32D32

vme_ext_ddrv_n

vme_data_out[31:0]

user_addr[31:2]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

reset_n

vme_data_in[31:0]

vme_addr_in[31:1]

vme_am[5:0]

vme_ext_ddir

vme_int_ddrv_n

vme_lword_n_in

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[3:0]

user_dat_out[31:0]

user_data_in[31:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[31:1]

user_access_ebl

user_access_blt

V
M

Eb
us

 s
ig

na
ls

clk

vme_irq_n[6:0]

user_access_addr_inc

vme_berr_n

V M E 6 4 S D a ta s h e e t

2.1 .3 VME64S_A24D32 Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 9

Figure 4: Inputs and Outputs of VME64S_A24D32 Core

VME64S_A24D32

vme_ext_ddrv_n

vme_data_out[31:0]

user_addr[23:2]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

reset_n

vme_data_in[31:0]

vme_addr_in[23:1]

vme_am[5:0]

vme_ext_ddir

vme_int_ddrv_n

vme_lword_n_in

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[3:0]

user_dat_out[31:0]

user_data_in[31:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[23:1]

user_access_ebl

user_access_blt

V
M

Eb
us

 s
ig

na
ls

clk

vme_irq_n[6:0]

user_access_addr_inc

vme_berr_n

V M E 6 4 S D a ta s h e e t

2.1 .3 VME64S_A24D32 Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 9

Figure 4: Inputs and Outputs of VME64S_A24D32 Core

VME64S_A24D32

vme_ext_ddrv_n

vme_data_out[31:0]

user_addr[23:2]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

reset_n

vme_data_in[31:0]

vme_addr_in[23:1]

vme_am[5:0]

vme_ext_ddir

vme_int_ddrv_n

vme_lword_n_in

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[3:0]

user_dat_out[31:0]

user_data_in[31:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[23:1]

user_access_ebl

user_access_blt

V
M

Eb
us

 s
ig

na
ls

clk

vme_irq_n[6:0]

user_access_addr_inc

vme_berr_n

V M E 6 4 S D a ta s h e e t

2.1 .4 VME64S_A24D16 Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 10

Figure 5: Inputs and Outputs of VME64S_A24D16 Core

VME64S_A24D16

vme_ext_ddrv_n

vme_data_out[15:0]

user_addr[23:1]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

reset_n

vme_data_in[15:0]

vme_addr_in[23:1]

vme_am[5:0]

vme_ext_ddir

vme_int_ddrv_n

vme_lword_n_in

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[1:0]

user_dat_out[15:0]

user_data_in[15:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[23:1]

user_access_ebl

user_access_blt

V
M

Eb
us

 s
ig

na
ls

clk

vme_irq_n[6:0]

user_access_addr_inc

vme_berr_n

V M E 6 4 S D a ta s h e e t

2.1 .4 VME64S_A24D16 Core I/O s

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 10

Figure 5: Inputs and Outputs of VME64S_A24D16 Core

VME64S_A24D16

vme_ext_ddrv_n

vme_data_out[15:0]

user_addr[23:1]
user_am[5:0]

In
te

rr
up

te
r

U
se

r s
id

e
si

gn
al

s
A

dd
re

ss
 d

ec
od

in
g

reset_n

vme_data_in[15:0]

vme_addr_in[23:1]

vme_am[5:0]

vme_ext_ddir

vme_int_ddrv_n

vme_lword_n_in

vme_dtack

vme_dtack_ebl_n

vme_as_n

vme_ds0_n

vme_ds1_n

vme_write_n

vme_iack_n

vme_iack_out_n

vme_iack_in_n

user_rwn

user_byte_valid[1:0]

user_dat_out[15:0]

user_data_in[15:0]

user_acc_req

user_acc_rdy

user_ireq

user_ilevel[2:0]

user_ivec[7/15/31:0]*

user_iack

U
se

r a
dd

re
ss

 d
ec

od
e

*) The width depends on the selected
interrupter mode

int_user_am[5:0]

int_user_addr[23:1]

user_access_ebl

user_access_blt

V
M

Eb
us

 s
ig

na
ls

clk

vme_irq_n[6:0]

user_access_addr_inc

vme_berr_n

V M E 6 4 S D a ta s h e e t

2.2 Signal Description
The following paragraphs list the inputs and outputs of the VME slave controller and provides
an overview of their functionality.

2.2 .1 General Inputs
These pins are used to clock and initialize the whole VME core. To guarantee VME
compliance, the falling edge of vme_as_n is used to latch the vme_addr_in and vme_am
signals. The falling edge of the system clock 'clk' is used to guarantee interface timing on
some signals. All other registers use the rising edge of 'clk' as the system clock. For proper
operation of the VME interface, it is recommended that the system clock is 40MHz and higher.

Pin Name Type Description
clk in System clock
reset_n in Asynchronous system reset, active low

2.2 .2 VME Bus
These pins are used to control data transfer through the VME interface.

Pin Name Type Description
vme_addr_in[23/31:1]1 in VME address bus input

vme_addr_out[31:1]2 out VME address bus output, used for MBLT

vme_am[5:0] in VME address modifier input
vme_data_in[15/31:0]3 in VME data bus input (from bus driver)
vme_data_out [15/31:0]3 out VME data bus output (goes to bus driver)
vme_ext_ddrv_n out Active low drive enable signal for external bidirectional

data bus drivers.
vme_ext_ddir

out
Direction control signal for external bidirectional data bus
drivers:

‘1’ to VME bus
‘0’ from VME bus

vme_ext_adrv_n2
out Active low drive enable signal for external bidirectional

address/lword drivers.
vme_ext_adir2 out Direction control signal for external bidirectional

address/lword drivers:
‘1’ to VME bus
‘0’ from VME bus

vme_int_ddrv_n in Active low drive enable signal for internal bidirectional
data bus drivers.

1 The address bus of an A24 slave controller is [23:1]. An A32 slave controller uses [31:1].
2 This signal is only available with the VME64 slave controller which supports MBLT.
3 The data bus of a D16 slave controller is [15:0] and [31:0] for a D32 slave controller.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 11

V M E 6 4 S D a ta s h e e t

2.2 Signal Description
The following paragraphs list the inputs and outputs of the VME slave controller and provides
an overview of their functionality.

2.2 .1 General Inputs
These pins are used to clock and initialize the whole VME core. To guarantee VME
compliance, the falling edge of vme_as_n is used to latch the vme_addr_in and vme_am
signals. The falling edge of the system clock 'clk' is used to guarantee interface timing on
some signals. All other registers use the rising edge of 'clk' as the system clock. For proper
operation of the VME interface, it is recommended that the system clock is 40MHz and higher.

Pin Name Type Description
clk in System clock
reset_n in Asynchronous system reset, active low

2.2 .2 VME Bus
These pins are used to control data transfer through the VME interface.

Pin Name Type Description
vme_addr_in[23/31:1]1 in VME address bus input

vme_addr_out[31:1]2 out VME address bus output, used for MBLT

vme_am[5:0] in VME address modifier input
vme_data_in[15/31:0]3 in VME data bus input (from bus driver)
vme_data_out [15/31:0]3 out VME data bus output (goes to bus driver)
vme_ext_ddrv_n out Active low drive enable signal for external bidirectional

data bus drivers.
vme_ext_ddir

out
Direction control signal for external bidirectional data bus
drivers:

‘1’ to VME bus
‘0’ from VME bus

vme_ext_adrv_n2
out Active low drive enable signal for external bidirectional

address/lword drivers.
vme_ext_adir2 out Direction control signal for external bidirectional

address/lword drivers:
‘1’ to VME bus
‘0’ from VME bus

vme_int_ddrv_n in Active low drive enable signal for internal bidirectional
data bus drivers.

1 The address bus of an A24 slave controller is [23:1]. An A32 slave controller uses [31:1].
2 This signal is only available with the VME64 slave controller which supports MBLT.
3 The data bus of a D16 slave controller is [15:0] and [31:0] for a D32 slave controller.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 11

V M E 6 4 S D a ta s h e e t

Pin Name Type Description
vme_int_adrv_n2 in Active low drive enable signal for internal bidirectional

address/lword drivers.
vme_lword_n_in in VME long word access indicator, low active
vme_lword_n_out2 out VME long word access indicator output, used for MBLT
vme_dtack out Data transfer acknowledge. Used to indicate whether the

DTACK is drive low or high (for rescinding)
vme_dtack_ebl_n out Data transfer acknowledge driver output, active low. This

is the enable signal of the external DTACK driver.
vme_as_n in VME address strobe: clocks with falling edge the internal

synchronization signals like vme_addr and vme_am.
vme_as_n is also used as data signal for access start
detection.

vme_ds0_n in Data strobe 0, active low
vme_ds1_n in Data strobe 1, active low
vme_write_n in Read/write signal, active low
vme_iack_n in Interrupt acknowledge, active low
vme_iack_in_n in Interrupt acknowledge daisy chain in, active low
vme_iack_out_n out Interrupt acknowledge daisy chain out, active low
vme_irq_n[6:0] out Interrupt, active low. Have to be connected to open

collector driver.
vme_berr_n in VME bus error

If the VME bus error is asserted, the VME slave
controller aborts the current operation and returns to idle
state. This is an input only as the slave does not
generate errors.

2.3 User Side Interface
The VME core hides the entire VME synchronization logic from the local bus interface (or user
side interface), which is fully synchronous. This simplifies integration of the core with the user
application.

2.3 .1 Local Bus In terface
Due to the synchronous local bus interface, VME interfacing becomes much easier. A simple
request–acknowledge handshaking scheme, that supports user wait-states, is used to connect
to the user logic.
In D32 implementations, the local bus is always 32-bit wide. VME cycles such as D08(OE) or
D16 are mapped accordingly to the respective byte position in the 32-bit word. A D64-MBLT
cycle is translated into two consecutive 32-bit local bus cycles. In D16 implementation, the
local bus is 16-bit wide.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 12

V M E 6 4 S D a ta s h e e t

Pin Name Type Description
vme_int_adrv_n2 in Active low drive enable signal for internal bidirectional

address/lword drivers.
vme_lword_n_in in VME long word access indicator, low active
vme_lword_n_out2 out VME long word access indicator output, used for MBLT
vme_dtack out Data transfer acknowledge. Used to indicate whether the

DTACK is drive low or high (for rescinding)
vme_dtack_ebl_n out Data transfer acknowledge driver output, active low. This

is the enable signal of the external DTACK driver.
vme_as_n in VME address strobe: clocks with falling edge the internal

synchronization signals like vme_addr and vme_am.
vme_as_n is also used as data signal for access start
detection.

vme_ds0_n in Data strobe 0, active low
vme_ds1_n in Data strobe 1, active low
vme_write_n in Read/write signal, active low
vme_iack_n in Interrupt acknowledge, active low
vme_iack_in_n in Interrupt acknowledge daisy chain in, active low
vme_iack_out_n out Interrupt acknowledge daisy chain out, active low
vme_irq_n[6:0] out Interrupt, active low. Have to be connected to open

collector driver.
vme_berr_n in VME bus error

If the VME bus error is asserted, the VME slave
controller aborts the current operation and returns to idle
state. This is an input only as the slave does not
generate errors.

2.3 User Side Interface
The VME core hides the entire VME synchronization logic from the local bus interface (or user
side interface), which is fully synchronous. This simplifies integration of the core with the user
application.

2.3 .1 Local Bus In terface
Due to the synchronous local bus interface, VME interfacing becomes much easier. A simple
request–acknowledge handshaking scheme, that supports user wait-states, is used to connect
to the user logic.
In D32 implementations, the local bus is always 32-bit wide. VME cycles such as D08(OE) or
D16 are mapped accordingly to the respective byte position in the 32-bit word. A D64-MBLT
cycle is translated into two consecutive 32-bit local bus cycles. In D16 implementation, the
local bus is 16-bit wide.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 12

V M E 6 4 S D a ta s h e e t

Pin Name Type Description
user_acc_req out Data access request

Active high until user_acc_rdy acknowledges the request
(or VME bus error occurs).

user_acc_rdy in User-side acknowledgment signal
User side access is finished by asserting user_acc_rdy
for one clock cycle.

user_addr[23/31:2]4 out Registered VME address bus
user_am[5:0] out Registered VME address bus modifier
user_data_out[15/31:0]5 out Local data bus that contains the data written to the user

side. During a write operation, user_data_out is valid
when usr_acc_req is asserted.

user_data_in[15/31:0]5 in Local data bus that contains the data read from the user
side. During a read operation user_data_in must be valid
when user_acc_rdy is asserted.

user_rwn out Data read/write_not indicator
0: Write
1: Read

user_byte_valid[1/3:0]5 out User data byte valid indicator
Indicates which byte of the user_wr_data/ user_rd_data
bus is valid or requested.
 [0]: user_wr_data[7:0] is valid
 [1]: user_wr_data[15:8] is valid
 [2]: user_wr_data[23:16] is valid
 [3]: user_wr_data[31:24] is valid

4 The address bus of an A24 slave controller is [23:2]. An A32 slave controller uses [31:2].
5 For a D16 slave controller, the user data bus is [15:0] and user_byte_valid is [1:0]

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 13

V M E 6 4 S D a ta s h e e t

Pin Name Type Description
user_acc_req out Data access request

Active high until user_acc_rdy acknowledges the request
(or VME bus error occurs).

user_acc_rdy in User-side acknowledgment signal
User side access is finished by asserting user_acc_rdy
for one clock cycle.

user_addr[23/31:2]4 out Registered VME address bus
user_am[5:0] out Registered VME address bus modifier
user_data_out[15/31:0]5 out Local data bus that contains the data written to the user

side. During a write operation, user_data_out is valid
when usr_acc_req is asserted.

user_data_in[15/31:0]5 in Local data bus that contains the data read from the user
side. During a read operation user_data_in must be valid
when user_acc_rdy is asserted.

user_rwn out Data read/write_not indicator
0: Write
1: Read

user_byte_valid[1/3:0]5 out User data byte valid indicator
Indicates which byte of the user_wr_data/ user_rd_data
bus is valid or requested.
 [0]: user_wr_data[7:0] is valid
 [1]: user_wr_data[15:8] is valid
 [2]: user_wr_data[23:16] is valid
 [3]: user_wr_data[31:24] is valid

4 The address bus of an A24 slave controller is [23:2]. An A32 slave controller uses [31:2].
5 For a D16 slave controller, the user data bus is [15:0] and user_byte_valid is [1:0]

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 13

V M E 6 4 S D a ta s h e e t

Local bus w rite cycle tim ing diagram
Following figure shows two local bus write cycles with different wait-states. While an access is
in process, all signals coming from the VME core are stable. The end of the access is
indicated by the backend logic by asserting user_acc_rdy.

Local bus read cycle tim ing diagram
The local bus read cycle access is similar to the write cycle. While a read is performed,
user_rd_data must be valid at the rising edge of the clock while user_acc_rdy is asserted.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 14

Figure 7: User read cycle with different wait-states

1ws read0ws read
0ws read 1ws read

*) user_addr, user_am, user_byte_valid, user_slv_mstrn

clk_sys

user_acc_req

user_acc_rdy

user_rd_data

user_rwn

others *

Figure 6: User write cycle with different wait-states

1ws write0ws write
0ws read 1ws read

*) user_addr, user_am, user_byte_valid, user_slv_mstrn

clk_sys

user_acc_req

user_acc_rdy

user_wr_data

user_rwn

others *

V M E 6 4 S D a ta s h e e t

Local bus w rite cycle tim ing diagram
Following figure shows two local bus write cycles with different wait-states. While an access is
in process, all signals coming from the VME core are stable. The end of the access is
indicated by the backend logic by asserting user_acc_rdy.

Local bus read cycle tim ing diagram
The local bus read cycle access is similar to the write cycle. While a read is performed,
user_rd_data must be valid at the rising edge of the clock while user_acc_rdy is asserted.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 14

Figure 7: User read cycle with different wait-states

1ws read0ws read
0ws read 1ws read

*) user_addr, user_am, user_byte_valid, user_slv_mstrn

clk_sys

user_acc_req

user_acc_rdy

user_rd_data

user_rwn

others *

Figure 6: User write cycle with different wait-states

1ws write0ws write
0ws read 1ws read

*) user_addr, user_am, user_byte_valid, user_slv_mstrn

clk_sys

user_acc_req

user_acc_rdy

user_wr_data

user_rwn

others *

V M E 6 4 S D a ta s h e e t

2.3 .2 Slave Access Decoder
The slave access decoder is a module that is external to the core. It contains the access
decode logic to select if the slave is addressed by the current VME bus cycle.
The signals int_user_addr and int_user_am allow a standard memory mapped address
decoding scheme. The address modifiers shall be used to properly decode address mode and
data transfer type.

Pin Name Type Description
int_user_addr[23/31:1] out Sampled VME address bus (by falling edge of

vme_as_n)
int_user_am[5:0] out Sampled VME Address bus modifier (by falling edge of

vme_as_n)
user_access_ebl in User access indicator

This signal needs to be asserted if int_user_addr and
int_user_am indicate that the current bus cycle
addresses this slave.

user_access_blt in BLT user access indicator
If asserted, the current bus cycle represents a block
transfer *BLT' cycle that is supported by this slave.

user_access_mblt in MBLT user access indicator
If asserted, the current bus cycle represents a
multiplexed block transfer *MBLT' cycle that is supported
by this slave.

user_access_addr_inc in Address increment indicator
Defines if during a BLT or MBLT access, the address
should be incremented. This is used when a user-side
device such as a FIFO is at a fixed address but supports
block type data transfers.
 0: Address is not incremented
 1: Address is incremented with each consecutive
 BLT or MBLT cycle

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 15

V M E 6 4 S D a ta s h e e t

2.3 .2 Slave Access Decoder
The slave access decoder is a module that is external to the core. It contains the access
decode logic to select if the slave is addressed by the current VME bus cycle.
The signals int_user_addr and int_user_am allow a standard memory mapped address
decoding scheme. The address modifiers shall be used to properly decode address mode and
data transfer type.

Pin Name Type Description
int_user_addr[23/31:1] out Sampled VME address bus (by falling edge of

vme_as_n)
int_user_am[5:0] out Sampled VME Address bus modifier (by falling edge of

vme_as_n)
user_access_ebl in User access indicator

This signal needs to be asserted if int_user_addr and
int_user_am indicate that the current bus cycle
addresses this slave.

user_access_blt in BLT user access indicator
If asserted, the current bus cycle represents a block
transfer *BLT' cycle that is supported by this slave.

user_access_mblt in MBLT user access indicator
If asserted, the current bus cycle represents a
multiplexed block transfer *MBLT' cycle that is supported
by this slave.

user_access_addr_inc in Address increment indicator
Defines if during a BLT or MBLT access, the address
should be incremented. This is used when a user-side
device such as a FIFO is at a fixed address but supports
block type data transfers.
 0: Address is not incremented
 1: Address is incremented with each consecutive
 BLT or MBLT cycle

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 15

V M E 6 4 S D a ta s h e e t

User access decoder tim ing diagram
The following figure shows the operation of the user decode module in relation to a VME
cycle.

1. The int_user_addr and int_user_am are latched with the falling edge of vme_as_n
2. If a valid access is detected by the user decode module, user_access_ebl,

user_access_blt, user_access_mblt, and user_access_addr_inc are set according to the
current cycle.

3. user_acc_req is asserted and remains asserted until the user logic terminates the access
by asserting user_acc_rdy

4. Once user_acc_rdy is sampled high, the vme_dtack_n output is asserted.
5. When the VME cycle originator samples vme_dtack_n low, vme_ds_n is released to

terminate the current VME cycle.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 16

Figure 8: User-access decoder operation

(1)

(2)

(3)

(4)

(5)

clk_sys

vme_as_n

vme_ds_n

vme_dtack_n

int_user_addr

user_access_ebl

user_access_blt

user_access_mblt

user_access_addr_inc

user_acc_req

user_acc_rdy

V M E 6 4 S D a ta s h e e t

User access decoder tim ing diagram
The following figure shows the operation of the user decode module in relation to a VME
cycle.

1. The int_user_addr and int_user_am are latched with the falling edge of vme_as_n
2. If a valid access is detected by the user decode module, user_access_ebl,

user_access_blt, user_access_mblt, and user_access_addr_inc are set according to the
current cycle.

3. user_acc_req is asserted and remains asserted until the user logic terminates the access
by asserting user_acc_rdy

4. Once user_acc_rdy is sampled high, the vme_dtack_n output is asserted.
5. When the VME cycle originator samples vme_dtack_n low, vme_ds_n is released to

terminate the current VME cycle.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 16

Figure 8: User-access decoder operation

(1)

(2)

(3)

(4)

(5)

clk_sys

vme_as_n

vme_ds_n

vme_dtack_n

int_user_addr

user_access_ebl

user_access_blt

user_access_mblt

user_access_addr_inc

user_acc_req

user_acc_rdy

V M E 6 4 S D a ta s h e e t

Example Access Decode Table
Following access decode table shows the decode operation of a user_decode module of an
A32/D32 VME slave that supports single cycle, BLT, and MBLT access in both supervisory and
non-privileged modes.

int_vme_
am

int_vme_
addr6

Description user_access_
ebl blt mblt

0x0F valid A32 supervisory block transfer (BLT) 1 1 0
0x0E valid A32 supervisory program access 1 0 0
0x0D valid A32 supervisory data access 1 0 0
0x0C valid A32 supervisory 64-bit block transfer (MBLT) 1 0 1
0x0B valid A32 non-privileged block transfer (BLT) 1 1 0
0x0A valid A32 non-privileged program access 1 0 0
0x09 valid A32 non-privileged data access 1 0 0
0x08 valid A32 non-privileged 64-bit block transfer (MBLT) 1 0 1

0x08-0x0F not valid Not valid address range 0 0 0
others valid Unsupported cycles 0 0 0

2.3 .3 Interrupter
The Interrupter block handles the generation of VME interrupt requests and acknowledgments
of local interrupts. During an interrupt acknowledge cycle, the Interrupter returns the interrupt
vector provided by the user side logic. The Interrupter module can generate VME interrupt
request on one of the seven possible interrupt level.

Pin Name Type Description
user_ireq in Interrupt request

Active one indicates that an interrupt is pending and a
VME interrupt will be generated. Must return to zero with
user_iack = 1.

user_iack out Interrupt acknowledgment
An active one event indicates the end of a valid interrupt
acknowledge cycle.

user_ilevel[2:0] in Interrupt level
user_ivec[7/15/31:0]7 in Interrupt vector

Depending on the interrupter configuration, the core
responds as D08(O), D16 or D32 interrupter. The width
of this port is according to the selected interrupter mode.

6 A valid int_vme_addr indicates that the VME slaves supports access to this particular address.
7 The user_ivec bus width depends on the interrupter parameter settings.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 17

V M E 6 4 S D a ta s h e e t

Example Access Decode Table
Following access decode table shows the decode operation of a user_decode module of an
A32/D32 VME slave that supports single cycle, BLT, and MBLT access in both supervisory and
non-privileged modes.

int_vme_
am

int_vme_
addr6

Description user_access_
ebl blt mblt

0x0F valid A32 supervisory block transfer (BLT) 1 1 0
0x0E valid A32 supervisory program access 1 0 0
0x0D valid A32 supervisory data access 1 0 0
0x0C valid A32 supervisory 64-bit block transfer (MBLT) 1 0 1
0x0B valid A32 non-privileged block transfer (BLT) 1 1 0
0x0A valid A32 non-privileged program access 1 0 0
0x09 valid A32 non-privileged data access 1 0 0
0x08 valid A32 non-privileged 64-bit block transfer (MBLT) 1 0 1

0x08-0x0F not valid Not valid address range 0 0 0
others valid Unsupported cycles 0 0 0

2.3 .3 Interrupter
The Interrupter block handles the generation of VME interrupt requests and acknowledgments
of local interrupts. During an interrupt acknowledge cycle, the Interrupter returns the interrupt
vector provided by the user side logic. The Interrupter module can generate VME interrupt
request on one of the seven possible interrupt level.

Pin Name Type Description
user_ireq in Interrupt request

Active one indicates that an interrupt is pending and a
VME interrupt will be generated. Must return to zero with
user_iack = 1.

user_iack out Interrupt acknowledgment
An active one event indicates the end of a valid interrupt
acknowledge cycle.

user_ilevel[2:0] in Interrupt level
user_ivec[7/15/31:0]7 in Interrupt vector

Depending on the interrupter configuration, the core
responds as D08(O), D16 or D32 interrupter. The width
of this port is according to the selected interrupter mode.

6 A valid int_vme_addr indicates that the VME slaves supports access to this particular address.
7 The user_ivec bus width depends on the interrupter parameter settings.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 17

V M E 6 4 S D a ta s h e e t

In terrupt Acknowledge Cycles
Through a generic or parameter definition, it is possible to define to what kind of interrupt
cycles this VME core responses. Following options are available

• D08(O) Interrupter: Responds to D08(O), D16 and D32 interrupt cycles
• D16 Interrupter: Responds to D16 and D32 interrupt cycles
• D32 Interrupter: Responds to D32 interrupt cycles

In terrupt Scheme
Interrupt requests to the VME bus are signaled by the active high user_ireq. Depending on the
user_ilevel (interrupt level), the vme_irq_n(x) will be asserted. As soon as the interrupt is
acknowledged by the VME bus, the user_iack event is asserted. If the interrupter uses the
ROAK (Release On AcKnowledge) scheme, then the user_ireq has to be released
immediately. If it uses the RORA (Release On Register Access) scheme then the user_ireq
has to be released when the interrupt source is acknowledged.
Note: user_ilevel and user_ivec have to be stable for the whole time period where user_ireq is
high.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 18

V M E 6 4 S D a ta s h e e t

In terrupt Acknowledge Cycles
Through a generic or parameter definition, it is possible to define to what kind of interrupt
cycles this VME core responses. Following options are available

• D08(O) Interrupter: Responds to D08(O), D16 and D32 interrupt cycles
• D16 Interrupter: Responds to D16 and D32 interrupt cycles
• D32 Interrupter: Responds to D32 interrupt cycles

In terrupt Scheme
Interrupt requests to the VME bus are signaled by the active high user_ireq. Depending on the
user_ilevel (interrupt level), the vme_irq_n(x) will be asserted. As soon as the interrupt is
acknowledged by the VME bus, the user_iack event is asserted. If the interrupter uses the
ROAK (Release On AcKnowledge) scheme, then the user_ireq has to be released
immediately. If it uses the RORA (Release On Register Access) scheme then the user_ireq
has to be released when the interrupt source is acknowledged.
Note: user_ilevel and user_ivec have to be stable for the whole time period where user_ireq is
high.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 18

V M E 6 4 S D a ta s h e e t

Timing using ROAK scheme:
The user side logic releases user_ireq upon detection of user_iack.

Timing using RORA scheme:
The user logic releases user_ireq upon the interrupt status register is cleared.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 19

Figure 9: ROAK interrupting scheme

valid

valid

clk_sys

user_ireq

user_iack

user_ilevel[2:0]

user_ivec[n:0]

Figure 10: RORA interrupting scheme

valid

valid

register access

clk_sys

user_ireq

user_iack

interrupt status register

user_ilevel[2:0]

user_ivec[n:0]

V M E 6 4 S D a ta s h e e t

Timing using ROAK scheme:
The user side logic releases user_ireq upon detection of user_iack.

Timing using RORA scheme:
The user logic releases user_ireq upon the interrupt status register is cleared.

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 19

Figure 9: ROAK interrupting scheme

valid

valid

clk_sys

user_ireq

user_iack

user_ilevel[2:0]

user_ivec[n:0]

Figure 10: RORA interrupting scheme

valid

valid

register access

clk_sys

user_ireq

user_iack

interrupt status register

user_ilevel[2:0]

user_ivec[n:0]

V M E 6 4 S D a ta s h e e t

2.3 .4 Rescinding DTACK

The VME64 specification allows DTACK to be operated as a rescinding signal instead of an
open-collector class signal. This results in an accelerated bus cycle. This feature can be
selected through slave_config_dtack = ‘1’.

Timing diagram with open-collector DTACK:

Timing diagram with rescinding DTACK:

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 20

Figure 11: Open-collector DTACK*

high-z

clk_sys

vme_as_n

vme_ds_n

vme_dtack_drv_n

vme_dtack_n

VMEbus DTACK*

Figure 12: Rescinding DTACK*

high-z

clk_sys

vme_as_n

vme_ds_n

vme_dtack_drv_n

vme_dtack_n

VMEbus DTACK*

V M E 6 4 S D a ta s h e e t

2.3 .4 Rescinding DTACK

The VME64 specification allows DTACK to be operated as a rescinding signal instead of an
open-collector class signal. This results in an accelerated bus cycle. This feature can be
selected through slave_config_dtack = ‘1’.

Timing diagram with open-collector DTACK:

Timing diagram with rescinding DTACK:

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 20

Figure 11: Open-collector DTACK*

high-z

clk_sys

vme_as_n

vme_ds_n

vme_dtack_drv_n

vme_dtack_n

VMEbus DTACK*

Figure 12: Rescinding DTACK*

high-z

clk_sys

vme_as_n

vme_ds_n

vme_dtack_drv_n

vme_dtack_n

VMEbus DTACK*

V M E 6 4 S D a ta s h e e t

2.4 Confi guration Parameters
The core can be configured and optimized for a particular application. Prior to synthesis, these
parameters should be fixed according to the target application.
Please note that depending on the selected VME slave implementation, not all configuration
parameter options are available.

Option Description
interrupter VME address bus input Interrupter selection

 8: D08(O) type interrupter
16: D16 type interrupter
32: D32 type interrupter

endian Endian selection for user side interface
0: Big endian, transparent
1: Little endian

rescinding_dtack Rescinding DTACK enable
The VME slave controller can use rescinding dtack to accelerate
data transmission.
 ‘0’: Disabled
 ‘1’: Enabled

blt_ebl Block transfer enable
0: Block transfer not supported
1: Block transfer supported

mblt_ebl Multiplexed block transfer enable
0: Multiplexed block transfer not supported
1: Multiplexed block transfer supported

address_width Address bus width
24: 24-bit address bus
32: 32-bit address bus

data_width Data bus width
16: 16-bit address bus
32: 32-bit address bus

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 21

V M E 6 4 S D a ta s h e e t

2.4 Confi guration Parameters
The core can be configured and optimized for a particular application. Prior to synthesis, these
parameters should be fixed according to the target application.
Please note that depending on the selected VME slave implementation, not all configuration
parameter options are available.

Option Description
interrupter VME address bus input Interrupter selection

 8: D08(O) type interrupter
16: D16 type interrupter
32: D32 type interrupter

endian Endian selection for user side interface
0: Big endian, transparent
1: Little endian

rescinding_dtack Rescinding DTACK enable
The VME slave controller can use rescinding dtack to accelerate
data transmission.
 ‘0’: Disabled
 ‘1’: Enabled

blt_ebl Block transfer enable
0: Block transfer not supported
1: Block transfer supported

mblt_ebl Multiplexed block transfer enable
0: Multiplexed block transfer not supported
1: Multiplexed block transfer supported

address_width Address bus width
24: 24-bit address bus
32: 32-bit address bus

data_width Data bus width
16: 16-bit address bus
32: 32-bit address bus

Copyright © 2001 - 2024 Inicore Inc. Interface Signal Description - Page 21

V M E 6 4 S D a ta s h e e t

3 A p p en d ix

3.1 Selecting proper I /O drivers

The VME standard requires some special high-drive drivers. Following is a list of critical signals
and their respective driver requirements:

– VME AM and WRITE*
The VME AM and WRITE* signals need to be driven by a standard three-state driver with
a low-state sink current of at least 48mA.

– VME DTACK*
The VME DTACK* signal needs to be driven by a high current three-state driver with a-
low state sink current of at least 64mA.8

– VME AS
The VME AS* signal needs to be driven by a high current three-state driver with a low-
state sink current of at least 64mA.

– VME DS0 and DS1
The VME DS0* and DS1 signals need to be driven by a standard three-state driver with a
low-state sink current of at least 64mA.

– VME BR[3:0]*
The VME BR[3:0]* signals need to be driven by a open collector driver with a low state-
sink current of at least 48mA.

– VME IRQ[7:1]*
The VME IRQ[7:1]* signals need to be driven by a open collector driver with a low state-
sink current of at least 48mA.

In order to achieve this high drive currents, FPGA/ASIC external driver chips need to be used.

8 This assumes that rescinding dtack is used.

Copyright © 2001 - 2024 Inicore Inc. Appendix - Page 22

V M E 6 4 S D a ta s h e e t

3 A p p en d ix

3.1 Selecting proper I /O drivers

The VME standard requires some special high-drive drivers. Following is a list of critical signals
and their respective driver requirements:

– VME AM and WRITE*
The VME AM and WRITE* signals need to be driven by a standard three-state driver with
a low-state sink current of at least 48mA.

– VME DTACK*
The VME DTACK* signal needs to be driven by a high current three-state driver with a-
low state sink current of at least 64mA.8

– VME AS
The VME AS* signal needs to be driven by a high current three-state driver with a low-
state sink current of at least 64mA.

– VME DS0 and DS1
The VME DS0* and DS1 signals need to be driven by a standard three-state driver with a
low-state sink current of at least 64mA.

– VME BR[3:0]*
The VME BR[3:0]* signals need to be driven by a open collector driver with a low state-
sink current of at least 48mA.

– VME IRQ[7:1]*
The VME IRQ[7:1]* signals need to be driven by a open collector driver with a low state-
sink current of at least 48mA.

In order to achieve this high drive currents, FPGA/ASIC external driver chips need to be used.

8 This assumes that rescinding dtack is used.

Copyright © 2001 - 2024 Inicore Inc. Appendix - Page 22

V M E 6 4 S D a ta s h e e t

3.2 Connections to external transceivers
Following figures show how the FPGA/ASIC internal I/O buffers are connected to the core and
to external VME bus drivers.

Address Bus Driver

Data Bus Driver

Copyright © 2001 - 2024 Inicore Inc. Appendix - Page 23

Figure 14: VME data bus transceiver

vme_data_int_out[31:0]

vme_data_int_in[31:0]

vme_data_int_drv_n

vme_data_drv_n

vme_data_dir

vme_data[31:0]

E

DIR

AnBn

Figure 13: VME address bus transceiver

vme_addr_int_out[31:1]

vme_addr_int_in[31:1]

vme_addr_int_drv_n

vme_addr_drv_n

vme_addr_dir

vme_addr[31:1]

E

DIR

AnBn

V M E 6 4 S D a ta s h e e t

3.2 Connections to external transceivers
Following figures show how the FPGA/ASIC internal I/O buffers are connected to the core and
to external VME bus drivers.

Address Bus Driver

Data Bus Driver

Copyright © 2001 - 2024 Inicore Inc. Appendix - Page 23

Figure 14: VME data bus transceiver

vme_data_int_out[31:0]

vme_data_int_in[31:0]

vme_data_int_drv_n

vme_data_drv_n

vme_data_dir

vme_data[31:0]

E

DIR

AnBn

Figure 13: VME address bus transceiver

vme_addr_int_out[31:1]

vme_addr_int_in[31:1]

vme_addr_int_drv_n

vme_addr_drv_n

vme_addr_dir

vme_addr[31:1]

E

DIR

AnBn

V M E 6 4 S D a ta s h e e t

4 R e fe re n c e s

• The VMEbus Specification, ANSI/IEEE STD1014-1987
• American National Standard for VME64, ANSI/VITA 1-1994

Copyright © 2001 - 2024 Inicore Inc. References - Page 24

V M E 6 4 S D a ta s h e e t

4 R e fe re n c e s

• The VMEbus Specification, ANSI/IEEE STD1014-1987
• American National Standard for VME64, ANSI/VITA 1-1994

Copyright © 2001 - 2024 Inicore Inc. References - Page 24

V M E 6 4 S D a ta s h e e t

Inicore is a leading Intellectual Property (IP) core and design solution provider. Our mission is to
supply pre-verified, technology neutral, and reusable IP cores for a wide range of target markets
from consumer goods to avionics and aerospace.
Our IP cores are complemented by comprehensive design service offerings:

• FPGA and ASIC Turn-Key Solutions
• Embedded System Design
• IP Core Design and Integration
• Consulting Services
• ASIC to FPGA Migration Service
• Obsolete Part Replacement

We can quickly provide you with an FPGA-, SoC- or Embedded System solution, leveraging our
IP know-how and broad application-specific expertise. Our experience in microelectronic system
integration allows us to guide you through the entire design flow from concept to final products.
We help you with feasibility studies, concept analysis, system specification, design
implementation and verification. Additionally, we do custom IP and low-level software
development. We also handle everything from board design through fabrication and assembly.
Our development process is based on Structured Analysis & Structured Design (SA/SD)
methodology that we apply to FPGA as well as ASIC projects. Verification testbenches rely on
Transaction Based Verification (TBV) methods. Both these methodologies lead to reusable
design and verification components. By planning for reusability, we set a solid base for further
developments in the ever-decreasing product design - and life cycle.
Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module
implementation. It is our aim to engage with your engineering team and complement them in
order to create your FPGA based system-on-chip solutions. This assistance, added to the ability
to reuse our pre-designed and pre-verified IP cores, dramatically reduces design risks and
execution time, and helps to successfully bring your product to the market.

Visit us @ www.inicore.com

INICORE INC. has made every attempt to ensure that the information in this document is accurate and complete.
However, INICORE INC. assumes no responsibility for any errors, omissions, or for any consequences resulting from the
information included in this document or the equipments it accompanies. INICORE INC. reserves the right to make
changes in its products and specifications at any time without notice.
Copyright © 2001-2024 INICORE INC. All rights reserved.

Copyright © 2001 - 2024 Inicore Inc. References - Page 25

V M E 6 4 S D a ta s h e e t

Inicore is a leading Intellectual Property (IP) core and design solution provider. Our mission is to
supply pre-verified, technology neutral, and reusable IP cores for a wide range of target markets
from consumer goods to avionics and aerospace.
Our IP cores are complemented by comprehensive design service offerings:

• FPGA and ASIC Turn-Key Solutions
• Embedded System Design
• IP Core Design and Integration
• Consulting Services
• ASIC to FPGA Migration Service
• Obsolete Part Replacement

We can quickly provide you with an FPGA-, SoC- or Embedded System solution, leveraging our
IP know-how and broad application-specific expertise. Our experience in microelectronic system
integration allows us to guide you through the entire design flow from concept to final products.
We help you with feasibility studies, concept analysis, system specification, design
implementation and verification. Additionally, we do custom IP and low-level software
development. We also handle everything from board design through fabrication and assembly.
Our development process is based on Structured Analysis & Structured Design (SA/SD)
methodology that we apply to FPGA as well as ASIC projects. Verification testbenches rely on
Transaction Based Verification (TBV) methods. Both these methodologies lead to reusable
design and verification components. By planning for reusability, we set a solid base for further
developments in the ever-decreasing product design - and life cycle.
Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module
implementation. It is our aim to engage with your engineering team and complement them in
order to create your FPGA based system-on-chip solutions. This assistance, added to the ability
to reuse our pre-designed and pre-verified IP cores, dramatically reduces design risks and
execution time, and helps to successfully bring your product to the market.

Visit us @ www.inicore.com

INICORE INC. has made every attempt to ensure that the information in this document is accurate and complete.
However, INICORE INC. assumes no responsibility for any errors, omissions, or for any consequences resulting from the
information included in this document or the equipments it accompanies. INICORE INC. reserves the right to make
changes in its products and specifications at any time without notice.
Copyright © 2001-2024 INICORE INC. All rights reserved.

Copyright © 2001 - 2024 Inicore Inc. References - Page 25

	1 Overview
	1.1 Features
	1.2 Deliverables
	1.3 Block Diagram
	1.4 Implementation Options

	2 Interface Signal Description
	2.1 VME Slave Controller I/Os
	2.1.1 VME64S Core I/Os
	2.1.2 VME64S_A32D32 Core I/Os
	2.1.3 VME64S_A24D32 Core I/Os
	2.1.4 VME64S_A24D16 Core I/Os

	2.2 Signal Description
	2.2.1 General Inputs
	2.2.2 VME Bus

	2.3 User Side Interface
	2.3.1 Local Bus Interface
	Local bus write cycle timing diagram
	Local bus read cycle timing diagram

	2.3.2 Slave Access Decoder
	User access decoder timing diagram
	Example Access Decode Table

	2.3.3 Interrupter
	Interrupt Acknowledge Cycles
	Interrupt Scheme

	2.3.4 Rescinding DTACK

	2.4 Configuration Parameters

	3 Appendix
	3.1 Selecting proper I/O drivers
	3.2 Connections to external transceivers
	Address Bus Driver
	Data Bus Driver

	4 References

