
iniDSP

Features:

Ref.Nr.: 441-DS-10 / 6/99

data sheet

US Sales Office:
INICORE INC.
5600 Mowry School Road, Suite 180,
Newark, CA 94560
Tel: 510 445 1529 Fax: 510 656 0995
E-mail: ask_us@inicore.com
Web: www.inicore.com

INICORE AG
Mattenstrasse 6a,CH-2555 Brügg, Switzerland
Tel: ++41 32 374 32 00, Fax: ++41 32 374 32 01
E-mail: ask_us@inicore.ch
Web: www.inicore.ch

The fastest path for

embedded DSP solutions

INICORE delivers highly specialized IP and
leading edge silicon to the industry.Our iniDSP
family offers DSP power for innovative System-on-
Chip solutions.
Low voltage - lowest powersolutions, optimized for
your specific algorithms, open new application fields
and push the limits of today’s standard parts.Youde-
fine package, memory and periphery to fulfil the de-
mands of innovative products.
Straight forward implementation techniques sqeeze
down schedules. Avoid long and costly timing verifi-
cation of technology dependent full custom solutions!
The application proven bus interface, the synchronous
clocking structure and a comprehensive, transparent
architecture reduce decision time, evaluation and de-
sign-in efforts.
The smart, low overhead hardware debugger circuit
gives you complete control over the iniDSP system for
on-chip real time debugging.
Product family development, follow up products and
second source is guaranteed byINICORE’s design
methodology and the consequent high level approach.
The wide application range goes fromlowest power
solutionslike hearing aids, signal conditioning in sen-
sors, over mid range audio and coding applications

• 16 bit fixed point customizable DSP
• Single cycle 16 bit signed/unsigned multiplier
• 1 or more 40bit accumulator(s)
• 64k X data, Y data and program memory range
• Supports pseudo floating point arithmetic
• 32bit barrel shifter
• Low latency interrupts and sleep mode
• Powerful built-in hardware debugger
• C-compiler, assembler, linker and debugger
• Straight forward system embedding
• Fully synchronous, technology independent
• VHDL model for synthesis and simulation
• Open and customizable architecture, instruction

plug-in: iniDSP is fast where you need the power!
• Lowest Power Consumption: < 100uA / MIPS
• 80MIPS on 0.18 micron ASIC proven
• Evaluation platform available (FPGA and ASIC)

Signal conditioning sensor with iniDSP:

INICORE - the reliable Core and System Provider.
We provide high quality IP, design expertise and
leading edge silicon to the industry.

Mult.

ALU

Accu

Sequencer

ST PC

Ri-X Data

Rj-Y Data

AD/DA converters

DMA / MSG-Filter

iniCAN

Program
Memory

X Data
Memory

Y Data
Memory

IO

UART

X-F

iniDSP

Communication port

INICORE AG iniDSP data sheet

w
gh
SP

time
rd
deal-
ch-

pro-
gate

with-
of
used
ec-

high
le,
ever
ight
ons,
his
sed
inte-

lead
ple-

ithin
SIC

or-
GA
used
on-
long

egra-
y
ted
n and
n

n
mic
con-
1 Introduction This document gives a short overview of the iniDSP concept. The concept targets lo
power and fast time to market support. The design is made for a straight forward hi
level design approach on modern integration technologies. This approach enables D
embedding for system on silicon solutions without excessive engineering power, fast
to production and a fully technology independent approach. You can follow a standa
design flow, giving you access to the most advanced ASIC technologies. There is no
ing with masks, there is no special effort needed to migrate your design to denser te
nologies!

1.1 Micro Power
Aspects

The iniDSP concept is based on a micro power approach, which allows digital signal
cessing on battery operated applications. The low power aspect is reached by a low
count and by the concept of a gated balanced clock tree, which allows a fast layout
out excessive timing verification. This approach helps to bring down the toggle rate
rarely used resources. For the main data path in the ALU etc. where the data path is
for almost every instruction, the low power approach is handled by not changing unn
essarily control signals. This reduces heavily toggling rate in the data path.

1.2 High
Performance
Aspects

By keeping critical paths short, high speed integration can be achieved that result in
performance systems. Additionally, most of the instructions are executed in one cyc
where branches and interrupt handling need maximum two. The programmer does n
have to take care of the pipelined architecture, compare / branch can be coded stra
forward. iniDSP has a built-in interface to custom co-processors and custom instructi
which can be used to enhance the system performance for a specific application. T
strategy makes iniDSP fast for your application, without the cost of an overall increa
performance. Our software tools support a customized instruction set to have optimal
gration support for them.

1.3 Fast time to
production

The structured design approach (SD) and high level RTL implementation techniques
to very short implementation time. This technology independent and synthesisable im
mentation guarantees optimal reusability, where follow-up products can be realized w
a very short time. By being able to choose the best technology at a late stage of the A
integration, systems can be optimized in respect to cost, power consumption or perf
mance. The technology independent solution allows to built fast prototypes using FP
technology, where customized parts can be verified efficiently. The same database is
later for the ASIC integration, resulting in a reliable test environment that gives you c
fidence in the performed tests on the FPGA. Software development can be started a
time before you see the first ASIC prototype!

1.4 Smooth
System
Integration

iniDSP is targeted for high level system embedding. To achieve a smooth system int
tion, we designed simple but smart interfaces towards the main system. A technolog
independent design guarantees easy system integration because all synthesis orien
design flows are supported. In addition, you can use the same database for simulatio
synthesis. There is only one iniDSP reference, eliminating the risk of faulty simulatio
models.

1.5 Debugging
features

iniDSP supports powerful hardware debugging concepts, where transparency is give
through access to all registers, memories and single stepping. Permanent and dyna
break points help you to debug complex software at full speed! The debugger can be
nected by a standard serial or any other interface.
Ref.Nr.: 441-DS-10 Page 2 of 15

INICORE AG iniDSP data sheet

ruc-

x-

H
le

hout
L)

T,

1
n

he

les.
2 General
Architecture

The iniDSP is a pipelined single accumulator architecture with an explicit harvard st

ture. For most of the instructions, the CPI1 is 1, for branches and some others, CPI is ma
imum 2. The following pictures shows the architecture:

2.1 ALU 2.1.1 Arithmetic Unit

The arithmetic path of the ALU has a total width of 40 bits, formed by the accu high
(AH), accu low (AL) and the extension bits (AE). The main accu is formed by AE | A
(24 bits), and AL is included in the datapath for multiply-accumulate and other multip
precision operations. Remark that a 40 bit addition can be performed in one cycle wit
pipelining. The input paths are the 40 bit accumulator, the 32bit multiplier output (PH,P
and the 16 bit data bus. All data is sign extended to 24 resp. 40 bits.

2.1.2 Logic Unit

The logic unit is 16bit wide and performs OR, AND, XOR and bit operations like SE
RES, TGL and TST.

2.1.3 Barrel Shifter

A barrel shifter operating on the full accumulator (AE|AH|AL) with a range of up to 3
bits left and 31 bits right shift allows powerful shifting. The shift amount and directio
can be controlled by the instruction or the exponent register (EXP).

2.1.4 Floating Point Support

The CLB (count leading bits) instruction allows detecting the most significant bit in t
40bit accumulator and stores the result in the EXP register. Together with the barrel
shifter, a floating point representation of a 40 bit number can be performed in 2 cyc

1. Clock Per Instruction

ST

Y X

PH PL

AH AL IMM PC

Sequencer / Controller

ALU/

R0..R3

RAM0

Prog. MEM

EXT0..7

R4..R7

RAM1

DATA BUS

DATA BUS

DATA BUS CTRL

RAM0 DATA

AE

EXP

LC

PCFG

REP

SHIFTER
Ref.Nr.: 441-DS-10 Page 3 of 15

INICORE AG iniDSP data sheet

Y.
fact

d to
o-

-

.

32
lf in

des-
2.2 Multiplier The single cycle multiplier can perform multiplications from the input registers X and
Signed and unsigned data format is supported. A special feature of the iniDSP is the
that the multiplication result can be directly stored into the accumulator (sign extende
40 bits), eliminating additional copy cycles form the normal destination (PH|PL) in is
lated multiplication instructions.

Data representation forsignedmultiplication is using 2’s complement numbers with a vir

tual data range of -1 .. +~11 for the X and Y register as well as for the result in PH|PL
The special case for (X=-1=0x8000 by Y=-1=0x8000) results in PH|PL = +~1=0x7fff’ffff.
The data sheme is shown in the following figure:

For unsigendmultiplication, both X and Y are using absolute data format, leading in a
bit result in PH|PL. Remark that the user has to handle the virtual data format himse
this case! The ‘special’ case of (X=0xffff by Y=0xffff) results in PH|PL=0xfffe0001. The

result is always positive, so no sign extension is done in case of accumulator as write
tination (AE = 0).

1. +~1 means “nearly” 1, which is (1 - 2^-15) for 16bit values, (1 - 2-̂31) for 32bit values.

S

S S

31bits data

15bits data15bits data

S = sign bit

= virtual decimal point

X Y

PH|PL

data limiter

32bits data

16bits data16bits data

X

PH|PL

Y

Ref.Nr.: 441-DS-10 Page 4 of 15

INICORE AG iniDSP data sheet

rds.
rpose
divid-
des
d R7

. Due
ory

ode

eral
an be

ber

ual
cess-
he

exe-
r

2.3 Memory and
pointers

2.3.1 Data Memories (RAM0, RAM1)

There are 2 identical data memories available, each with a maximum size of 64k wo
Each data memory can be accessed by 4 address pointers, where 3 are general pu
and 1 is predefined as stack. The general purpose pointers (R0..R2, R4..R6) can in
ually be configured for different loop size and increment/decrement. Addressing mo
are nop, post-increment, post-decrement and signed offset. For stack access, R3 an
can be accessed with pre-decrement without additional delay.

2.3.2 Program Memory (PRAM)

The program memory can be addressed by the PC, or any of the 8 address pointers
to the permanent access for instruction fetch, each data access to the program mem
takes 2 cycles.

2.4 Repeat and
Loop Support

For filter implementations, a repeat instruction (REP) allows significant reduction in c
size and power. A hardware loop counter (LOOP), together with the “decrement and
branch if not zero” instruction enables efficient implementation of larger loops.

2.5 External
resources

For external resources like peripherals, interrupt controller, etc. or for additional gen
purpose registers, there are 4 external registers available, each 16bits wide. They c
implemented internally or externally, or replaced by the registers of peripherals like
UARTs etc.

2.6 Interrupts The interrupt structure is designed for low latency, low effort processing of a large num
of interrupt sources. Although the iniDSP provides only one interrupt line, including
enable flag an external interrupt controller provides up to 15 interrupt lines with individ
vectors and autonomous flag handling. This minimizes the overhead of interrupt pro
ing. Interrupts need 2 cycles for vector fetch and 2 cycles for return from interrupt. T
repeat instruction cannot be broken by interrupts.

2.7 Sequencer The sequential execution of instructions is partitioned in two steps, fetch / decode and
cution / write back, using a 1 stage pipeline. Remark that there is no pipeline delay fo
compare/branch instruction flows!

PC

PREV ACTUAL NEW

PREV ACTUAL NEW

PC-1 PC PC+1 PC+2

(PREV) (ACTUAL) (NEW)

INSTR

EXE
(results)

(PC+1) (PC+1) (PC+1)(PC+1)

1 1 11Seq State
Ref.Nr.: 441-DS-10 Page 5 of 15

INICORE AG iniDSP data sheet

llow-

s
tion

ays
n

egis-
d.

ipe-
be
3 Programming
Model

This chapter describes the iniDSP programming model, internal registers etc. The fo
ing table shows the register available in the iniDSP.

3.1 Accumulator The accumulator of the iniDSP has totally 40 bits, partitioned in AE, AH and AL. It i
the target register for math and logic operations and may also be target for multiplica
results. The three registers have following functions:

AE: Extension or guard bits. Used for compensating a temporary overflow. AE is alw
written/modified when AH is written. In case of load instructions, AE is written as sig
extension of AH. AE can be read and written as sign extended value on the EXT2 r
ter(15:0). The significant bits are located in (7:0), where bits (15:8) are sign extende

AH: High accumulator. This is the main part of the accumulator. All logical and math
operations results are stored into this register.

AL: Low accumulator. Used together with all double precision math operations, like
MPLA, MPLS, DADD, DSUB etc. Can be used as universal data register.

3.2 MAC Unit Multiply-accumulate instructions are executed using the multiplier and the ALU in a p
lined way. To implement a MAC stream (e.g. FIR filter), the following sequence may
used:

MSET (Rj+), (Ri+) #set up first X,Y values
MLD (Rj+), (Ri+) #load new X,Y, multiply old X,Y, Accu=0
REP 127 #repeat n times (or place a few MPYA’s)
MPYA (Rj+), (Ri+) #do the multiply-accumulations
DADD P #calculate the last product and add A
DADD #add the last product to A

AE AH AL
39 32 31 16... 15 ... 0

X

Y

PH

PL

PC

ST

LC

PCFG / EXT0

EXP / EXT1

AE / EXT2

DEBUG

REP

9

10

6

8

EXT4 .. 7
Ref.Nr.: 441-DS-10 Page 6 of 15

INICORE AG iniDSP data sheet

nc-

r

d

rs,
For the timings, see the following diagram:

3.3 Registers The iniDSP has a set of 16bit data registers, with dedicated functions:

X: The multiplier input register 1, signed or unsigned, triggers the multiplier

Y: The multiplier input register 2, signed or unsigned, triggers also the multiplier

PH: The multiplier high output register, signed or unsigned

PL: The multiplier low output register, unsigned

PC: The program counter

LC: The 9bit loop counter register, unsigned, hidden register

REP: The 10bit repeat counter register, unsigned, hidden register.

EXT0 .. EXT7: A set of general purpose data registers with application dependent fu
tionality:

MSET MLD REP MPYA MPYA MPLA DADD P DADD
X,Y

PH|PL

Accu

?

? ?

??

1 2 3 127 128126

repeat...

1

“00’0000’0000”

2 125 127 128126

1281251241

Name Access Size Functionality

PCFG (or EXT0) R/W 16 Pointer configuration for R0..R7, controlled by A0..A2 of ST registe

EXP (or EXT1) R/W 6/16 Exponent register for ‘CLB A’ and ‘SHFT A, EXP’ instruction.
When EXP is read or written, it is sign extended to 16 bits

AE (or EXT2) R/W 8/16 Guard bits, extension of accumulator.
When EXP is read or written, it is sign extended to 16 bits

DEBUG (or EXT3) not recom-
mended

16 Debug register. It is not recommended to use this register (restricte
debugging features)

EXT4 user defined can be used for high performance peripheral units, auxiliary registe
interrupt controller etc.

EXT5 user defined

EXT6 user defined

EXT7 user defined
Ref.Nr.: 441-DS-10 Page 7 of 15

INICORE AG iniDSP data sheet

nly

on
be

g
in

d the
j

nge
3.4 Status
Register and
Flags

The iniDSP has a set of standard and special flags for extended usage. Flags are o
affected in logical and math operations. The status register looks like this:

N: Negative flag; valid after math operations, equals bit7 of AE (sign bit)

V: Overflow flag; sticky bit, set after math operations, when the an overflow occurred
the extension bits (AE) and the result in the accumulator left the valid range. It has to
cleared by writing a ‘0’ to the ST register.

Z: Zero flag;
Logical operations: Set if AH = 0, cleared otherwise.
Math operations: Set if AE|AL = 0, cleared otherwise.

C: Carry flag; the carry out of AE is valid after math operations

E: Extension flag; valid after math operations, when the AE register is in use.

L: Limiter flag; sticky bit, set after write operations with AH as source, when a clippin
occurred (AE is in use, AH is set to positive or negative maximum). L is not affected
logical operations.

RiC: The pseudo carry flag for the address pointers. Set when a pointer wraps aroun
loop. When both pointer groups are used, the RiC is the ored value of the Ri and R
pointer carry flag.

OP: Overflow protect: when set, values in the accumulator (AE|AH) exceeding the ra
of +1/-1 are fixed to the maximum value (when AH is written to any destination).

IE: The interrupt enable flag:
0: Interrupt disabled (after interrupt acknowledge and reset)
1: Interrupt enabled

SM: The multiplier sign mode:
‘0’ : multiply signed by signed (sign extension on PH|PL to 40bits)
‘1’ : multiply unsigned by unsigned (complete with zeros PH|PL to 40bits)

A2, A1, A0: The pointer configure address pointers, see table in 3.5.3.

15

N

14

V

13

Z

12

C

11

E

10

L

9

RiC

8

OP

7

-

6

IE

5

-

4

SM

3

-

2

A2

1

A1

0

A0
Ref.Nr.: 441-DS-10 Page 8 of 15

INICORE AG iniDSP data sheet

is
ment

ters

as
its:

reg-
ister

t sig-

d
se.

ld

nc-

as
SS).
3.5 Address
Pointers

This table shows the functionality of the pointer modifications and the possible loop
ranges etc.

3.5.1 Pointer use

Pointers can be modified in the same instruction as they are used. The modification
always done after usage, except for the stack registers R3 and R7, where pre-incre
addressing is used to handle the stack correctly.
When a pointer wraps around (pos or neg), the RiC flag in the ST is set. If both poin
Ri and Rj are modified, RiC takes the ored value from Ri. and Rj.

The following table gives an overview of the possible addressing modes:

3.5.2 Pointer loop definition

Each pointer can be programmed individually, except R3 and R7 which work always
stack pointers (pre-increment and post decrement by 1). The config word takes 16 b

“SSSSMIIIIIIIIIII ”

3.5.3 Configure pointers

To configure the pointers, external registers (e.g. EXT0) and the A(2:0) bits in the ST
ister are used. A2, A1, A0 in the ST register select the destination when the EXT0 reg

(Rij) Binary code Operation in linear mode Operation in power of 2 mode

(Rij) “00” no modification no modification

(Rij+) “01” Rij = (Rij + 1) MOD LoopSize Rij = (Rij + 1) MOD LoopSize

(Rij-) “10” Rij = (Rij - 1) MOD LoopSize Rij = (Rij - 1) MOD LoopSize

(Rij+!) “11” not allowed Rij = Rij +I , MOD LoopSize

LoopMode Description

Power of 2 Mode
with programmable
increment / decre-
ment value.

“SSSS”: The size field of the loop: A 4bit binary number which defines the loop size (and the

base). The pointer will loop at 2SSSS. The range is “0001” to “1011” which results in 2, 4, 8, 16, 32,
64, 128, 256, 512, 1024 and 2048 word loops. The loop base is defined by the remaining mos
nificant bits of the pointer remain stable. The value “0000” is used to disable the loop function
(LoopSize = 65536)

“M”: The mode flag defines the loop mode. In power of 2 mode, it must be ‘0’.

“IIIIIIIIIII”: The increment field defines the increment of the pointer modification. It is a signe
number with a range of -1024 to +1023. This value does not have to be a divisor of the loop ba

Linear Mode with
fixed increment /
decrement by 1

“SSSS”: The base field of the loop: A 4bit binary number which defines the loop base. This fie

defines the base of the linear loop by 2SSSS. The range is “0001” to “1011” which results in a base
of 2,4,8,16,32,64,128,256,512, 1024 and 2048. The value “0000” is used to disable the loop fu
tion (LoopSize = 65536). This field has to be accorded with the loop size field.

“M”: The mode flag defines the loop mode. In linear mode, it must be ‘1’.

“IIIIIIIIIII”: The loop size field. The loop size is defined by this unsigned binary number and h
a range of 1 to 2048. This value must be accorded for correct operation with the base field (SS
Ref.Nr.: 441-DS-10 Page 9 of 15

INICORE AG iniDSP data sheet

the

h

r
-

same
this
is written. To configure a pointer, select first the address (see table below)., then write
pointer configuration into EXT0.

3.5.4 Pointer examples

Pointer example for power of 2 mode: (M = 0) “0011000000000011”

Loop Size = “0011” = 23 = 8(dec)
Loop increment = “00000000011” = 3(dec)

The pointer wraps around every 23 boundary. The base is defined by the pointer itself wit
its bits (15:3). The remaining pointer bits (2:0) will loop in the following manner:

(e.g. (R2+)): R2 = R2 + ((R2 + 3) MOD 8) : R2 = 0, 3, 6, 1, 4, 7, 2, 5, 0, etc.

Pointer example for linear mode: (M = 1) “0100100000001100”

Loop Base = “0100” = 24 = 16(dec)
Loop size+1 = “0000001100” = 13(dec)
Increment is always +/- 1

The pointer base may be placed in every 24 boundary. The base is defined by the pointe
itself with its bits (15:4). The remaining pointer bits (3:0) will loop in the following man
ner:

(e.g. (R4+)): R4 = R4 + ((R4 + 1) MOD 13) :
R4 = 0,1,2,3,4,5,6,7,8,9,10,11,12,0,1,2, etc.

Remark: To set a base in the linear mode is needed to enable different loops in the
memory block. The selected base must always be larger than the linear loop size. If
is not the case, the pointer behavior will be undefined.

A2 A1 A0 Configure pointer

0 0 0 R0

0 0 1 R1

0 1 0 R2

0 1 1 R3 is fixed as stack pointer

1 0 0 R4

1 0 1 R5

1 1 0 R6

1 1 1 R7 is fixed as stack pointer
Ref.Nr.: 441-DS-10 Page 10 of 15

INICORE AG iniDSP data sheet

rd.

the

1

A, Reg

Rij)

RAM

(Rij)p

 Bit

g, Bit

ij

IMM

, SIMM
4 Instruction set The instruction set is summarized in the following table, grouped by the instruction wo
[nn:mm] show the relevant bits of the instruction word.

1) MOD OpA, Cond can be:
- SWAP A, Cond
- NEG A, Cond
- ABS A, Cond
- CMPL A, Cond

2) BRA PRAM, Cond can be:
- BRA PRAM, Cond
- DBNZ PRAM

Remark that the assembler supports aliases for PUSH, PULL, etc. in order to make
code more readable.

[15:13]

 [12:9] 000 001 010 011 100 101 110 11

0000 LD Reg, Reg SUB A, Reg LDLC SIMM CMP A, Reg ADD A, Reg AND A, Reg OR A, Reg EOR

0001 LD Reg, (Rij) SUB A, (Rij) LD (Rij), Reg CMP A, (Rij) ADD A, (Rij) AND A, (Rij) OR A, (Rij) EOR A, (

0010 SHFT n MPYS Reg, (Ri) MSET Reg, (Ri) MPYA Reg, (Ri) MLD Reg, (Ri)

0011 LD A, DRAM SUB A, DRAM LD DRAM, A CMP A, DRAM ADD A, DRAM AND A, DRAM OR A, DRAM EOR A, D

0100 LDI Rij, IMM
LDI Reg, IMM

SUBI A, IMM CALL
PRAM, Cond

CMPI A, IMM ADDI A, IMM ANDI A, IMM ORI A, IMM EORI A, IMM

0101 LD Reg, (Rij)p SUB A, (Rij)p LD (Rij)p, Reg CMP A, (Rij)p ADD A, (Rij)p AND A, (Rij)p OR A, (Rij)p EOR A,

0110 LDI (Rij), IMM DEC(Rij),
Cond

BRA
PRAM,Cond 2)

INC (Rij), Cond RES(Rij), Bit SET(Rij), Bit TGL (Rij),

0111 DEC Reg, Cond MUL A,P,Cond MOD OpA,
Cond 1)

INC Reg, Cond RES Reg, Bit SET Reg, Bit TGL Re

1000 SHFT A,INV,
Cond

CLB A RND A TST (Rij), Bit

1001 LD Reg, Rij SUB A, Rij LD Rij, Reg CMP A, Rij ADD A, Rij AND A, Rij OR A, Rij EOR A, R

1010 CLR Reg DSUB P, Cond SLEEP IE
SET_IE

DCMP DADD P, Cond TST Reg, Bit

1011 MODR Rj, Ri MPYS (Rj), (Ri) MSET (Rj), (Ri) MPYA (Rj), (Ri) MLD (Rj), (Ri)

1100
LDSI A, SIMM SUSI A, SIMM REP n CMSI A, SIMM ADSI A, SIMM ANSI A, SIMM ORSI A, SIMM EOSI A, S

1101

1110
LDSI R0, SIMM LDSI R1, SIMM LDSI R2, SIMM LDSI R3, SIMM LDSI R4, SIMM LDSI R5, SIMM LDSI R6, SIMM LDSI R7

1111
Ref.Nr.: 441-DS-10 Page 11 of 15

INICORE AG iniDSP data sheet

 AL

xt.

xt.

xt.

xt.

xt.

xt.

xt.

ebug

ed

L

xt.

xt.

xt.

xt.

xt.

xt.

xt.

 AL

on SM

on SM

 AL

on SM
4.1 Alphabetical
list of
instructions:

Instruction Instruction code # C Operation N V Z C E L R Comment

ABS A, Cond, DW 0110111M1111cccc 1 2 A = ABS(A) ↕ ➚ ↕ ❍ ↕ ❍ ❍ DW = 1: incl.

ADD A, Reg, C 10000000C000rrrr 1 1 A = A + Reg + C ↕ ➚ ↕ ↕ ↕ ➚ ❍ Input is sign e

ADD A, (Rij), C 1000001BC000PPPP 1 1 A = A + (Rij) + C ↕ ➚ ↕ ↕ ↕ ❍ ↕ Input is sign e

ADD A, DRAM, B 1000011BDDDDDDDD1 1 A = A + (DRAM) ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

ADD A, (Rij)p, C 1000101BC000PPPP 2 3 A = A + (Rij)p + C ↕ ➚ ↕ ↕ ↕ ❍ ↕ Input is sign e

ADD A, Rij, C 1001001BC00000pP 1 1 A = A + Rij + C ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

ADDI A, IMM, C 10001000C1110000
IIIIIIIIIIIIIIII

2 5 A = A + IMM + C ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

ADSI A, SIMM 100110SSSSSSSSSS 1 1 A = A + SIMM ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

AND A, Reg 101000000000rrrr 1 1 AH = AH and Reg ❍ ❍ ↕ ❍ ↕ ➚ ❍

AND A, (Rij) 1010001B0000PPPP 1 1 AH = AH and (Rij) ❍ ❍ ↕ ❍ ↕ ❍ ↕

AND A, DRAM, B 1010011BDDDDDDDD1 1 AH = AH and (DRAM) ❍ ❍ ↕ ❍ ↕ ❍ ❍

AND A, (Rij)p 1010101B0000PPPP 2 3 AH = AH and (Rij)p ❍ ❍ ↕ ❍ ↕ ❍ ↕

AND A, Rij 1011001B000000pP 1 1 AH = AH and Rij ❍ ❍ ↕ ❍ ↕ ❍ ❍

ANDI A, IMM 1010100000000000
IIIIIIIIIIIIIIII

2 5 AH = AH and IMM ❍ ❍ ↕ ❍ ↕ ❍ ❍

ANSI A, SIMM 101110SSSSSSSSSS 1 1 AH = AH and SIMM ❍ ❍ ↕ ❍ ↕ ❍ ❍

BRA PRAM, Cond 010011000000cccc
IIIIIIIIIIIIIIII

2 7 IF Cond = True: PC = IMM❍ ❍ ❍ ❍ ❍ ❍ ❍

BREAK 0000000000100010 1 1 Stop the DSP (debug) ❍ ❍ ❍ ❍ ❍ ❍ ❍ Wake up by d

CALL PRAM, Cond 0100100B0111cccc 2 8 If Cond = True: PC = IMM
Old PC = (R3/R7-)

❍ ❍ ❍ ❍ ❍ ❍ ↕ ST is not sav

CLB A 0101000000000000 1 1 EXP = Pos significant bit A↕ ❍ ↕ ❍ ❍ ❍ ❍ A = AE|AH|A

CLR A, DW 0001010M00010000 1 1 A = 0 ❍ ❍ ❍ ❍ ❍ ❍ ❍

CLR Reg 00010100RRRR0000 1 1/4 Reg = 0 ❍ ❍ ❍ ❍ ❍ ❍ ❍

CMP A, Reg, C 01100000C000rrrr 1 1 A - Reg - C ↕ ➚ ↕ ↕ ❍ ➚ ❍ Input is sign e

CMP A, (Rij), C 0110001BC000PPPP 1 1 A - (Rij) - C ↕ ➚ ↕ ↕ ❍ ❍ ↕ Input is sign e

CMP A, DRAM, B 0110011BDDDDDDDD1 1 A - (DRAM) ↕ ➚ ↕ ↕ ❍ ❍ ❍ Input is sign e

CMP A, (Rij)p, C 0110101BC000PPPP 2 3 A - (Rij)p - C ↕ ➚ ↕ ↕ ❍ ❍ ↕ Input is sign e

CMP A, Rij, C 0111001BC00000pP 1 1 A - Rij - C ↕ ➚ ↕ ↕ ❍ ❍ ❍ Input is sign e

CMPI A, IMM, C 01101000C1110000
IIIIIIIIIIIIIIII

2 5 A - IMM - C ↕ ➚ ↕ ↕ ❍ ❍ ❍ Input is sign e

CMSI A, SIMM 011110SSSSSSSSSS 1 1 A - SIMM ↕ ➚ ↕ ↕ ❍ ❍ ❍ Input is sign e

CMPL A, Cond, DW 0110111M0110cccc 1 2 A = NOT(A) ↕ ➚ ↕ ❍ ↕ ❍ ❍ DW = 1: incl.

DADD P, Cond 1001010000P0cccc 1 1 A = A + PH|PL, write X*Y ↕ ➚ ↕ ↕ ↕ ❍ ❍ sign ext dep.

DBNZ PRAM 0100110100000000
IIIIIIIIIIIIIIII

2 7 LC = LC - 1
PC = IMM if LC(old) = 0

❍ ❍ ❍ ❍ ❍ ❍ ❍

DCMP 0111010000000000 1 1 A - PH|PL ↕ ➚ ↕ ↕ ↕ ❍ ❍ sign ext dep.

DEC A, Cond, DW 0010111M0001cccc 1 2 A = A - 1 ↕ ➚ ↕ ↕ ↕ ❍ ❍ DW = 1: incl.

DEC Reg, Cond 00101110RRRRcccc 2 6 Reg = Reg - 1 ↕ ➚ ↕ ↕ ↕ ❍ ❍ Reg /= AH

DEC (Rij), Cond 0010110BPPPPcccc 2 6 (Rij) = (Rij) -1 ↕ ➚ ↕ ↕ ❍ ❍ ↕

DSUB P, Cond 0011010000P0cccc 1 1 A = A - PH|PL, write X*Y ↕ ➚ ↕ ↕ ↕ ❍ ❍ sign ext dep.

EOR A, Reg 111000000000rrrr 1 1 AH = AH eor Reg ❍ ❍ ↕ ❍ ↕ ➚ ❍

EOR A, (Rij) 1110001B0000PPPP 1 1 AH = AH eor (Rij) ❍ ❍ ↕ ❍ ↕ ❍ ↕

EOR A, DRAM, B 1110011BDDDDDDDD1 1 AH = AH eor (DRAM) ❍ ❍ ↕ ❍ ↕ ❍ ❍
Ref.Nr.: 441-DS-10 Page 12 of 15

INICORE AG iniDSP data sheet

 AL

xt. (A)

xt. (A)

xt.

xt.

xt. (A)

xt. (A)

xt. (A)

ed

gned

re option

re option

on SM
re option

on SM
re option

on SM
re option

on SM
e option

e option

re option
EOR A, (Rij)p 1110101B0000PPPP 2 3 AH = AH eor (Rij)p ❍ ❍ ↕ ❍ ↕ ❍ ↕

EOR A, Rij 1111001B000000pP 1 1 AH = AH eor Rij ❍ ❍ ↕ ❍ ↕ ❍ ❍

EORI A, IMM 1110100000000000
IIIIIIIIIIIIIIII

2 5 AH = AH eor IMM ❍ ❍ ↕ ❍ ↕ ❍ ❍

EOSI A, SIMM 111110SSSSSSSSSS 1 1 AH = AH eor SIMM ❍ ❍ ↕ ❍ ↕ ❍ ❍

INC A, Cond, DW 100011100001cccc 1 2 A = A + 1 ↕ ➚ ↕ ↕ ↕ ❍ ❍ DW = 1: incl.

INC Reg, Cond 10001110RRRRcccc 2 6 Reg = Reg + 1 ↕ ➚ ↕ ↕ ↕ ❍ ❍ Reg /= AH

INC (Rij), Cond 1000110BPPPPcccc 2 6 (Rij) = (Rij) +1 ↕ ➚ ↕ ↕ ❍ ❍ ↕

LDLC SIMM 0100000SSSSSSSSS 1 1 LC = SIMM (9bit) ❍ ❍ ❍ ❍ ❍ ❍ ❍

LD Reg, Reg 00000000RRRRrrrr 1† 1/4 Dest Reg = Source Reg ❍ ❍ ❍ ❍ ↕ ➚ ❍ Input is sign e

LD Reg, (Rij) 0000001BRRRRPPPP1† 1/4 Reg = (Rij) ❍ ❍ ❍ ❍ ↕ ❍ ↕ Input is sign e

LD (Rij), Reg 0100001BrrrrPPPP 1 1 (Rij) = Reg ❍ ❍ ❍ ❍ ❍ ➚ ↕

LD A, DRAM, B 0000011BDDDDDDDD1 1 A = (DRAM) ❍ ❍ ❍ ❍ ❍ ❍ ❍ Input is sign e

LD DRAM, A, B 0100011BDDDDDDDD1 1 (DRAM) = A ❍ ❍ ❍ ❍ ❍ ➚ ❍ Input is sign e

LD Reg, (Rij)p 0000101BRRRRPPPP 2 3/4 Reg = (Rij)p ❍ ❍ ❍ ❍ ❍ ❍ ↕ Input is sign e

LD (Rij)p, Reg 0100101BrrrrPPPP 2 3 (Rij)p = Reg ❍ ❍ ❍ ❍ ❍ ➚ ↕

LD Reg, Rij 0001001BRRRR00pP 1† 1/4 Reg = Rij ❍ ❍ ❍ ❍ ↕ ❍ ❍ Input is sign e

LD Rij, Reg 0101001Brrrr00pP 1 1 Rij = Reg ❍ ❍ ❍ ❍ ❍ ➚ ❍

LDI Reg, IMM 00001000RRRR0000
IIIIIIIIIIIIIIII

2 4/5 Reg = IMM ❍ ❍ ❍ ❍ ↕ ❍ ❍ Input is sign e

LDI Rij, IMM 0000100B000010pP
IIIIIIIIIIIIIIII

2 5 Rij = IMM ❍ ❍ ❍ ❍ ❍ ❍ ❍

LDI (Rij), IMM 0000110B0000PPPP
IIIIIIIIIIIIIIII

2 5 (Rij) = IMM ❍ ❍ ❍ ❍ ❍ ❍ ↕

LDSI A, SIMM 000110SSSSSSSSSS 1 1 A = SIMM ❍ ❍ ❍ ❍ ❍ ❍ ❍ SIMM is sign

LDSI Rij, SIMM BpP111SSSSSSSSSS 1 1 Rij = SIMM ❍ ❍ ❍ ❍ ❍ ❍ ❍ SIMM is unsi

MLD (Rj), (Ri), SQ 1011011SPPPPpppp 1 9 X = (Ri)
Y = (Rj) {S=0}; (Ri) {S=1}
AE, AH, AL = 0
C = 0
update PH|PL

0 ❍ 1 0 0 ❍ ↕ SQ = 1: squa

MLD Reg, (Ri), SQ 1010010Srrrrpppp 1 9 X = (Ri) {S=0}; Reg {S=1}
Y = Reg
AE, AH, AL = 0
C = 0

0 ❍ 1 0 0 ❍ ↕ SQ = 1: squa

MPYA (Rj), (Ri), SQ 1001011SPPPPpppp 1 9 X = (Ri)
Y = (Rj) {S=0}; (Ri) {S=1}
A = A + PH|PL

↕ ➚ ↕ ↕ ↕ ❍ ↕ sign ext dep.
SQ = 1: squa

MPYA Reg, (Ri), SQ 1000010Srrrrpppp 1 9 X = (Ri) {S=0}; Reg {S=1}
Y = Reg
A = A + PH|PL

↕ ➚ ↕ ↕ ↕ ❍ ↕ sign ext dep.
SQ = 1: squa

MPYS (Rj), (Ri), SQ 0011011SPPPPpppp 1 9 X = (Ri)
Y = (Rj) {S=0}; (Ri) {S=1}
A = A - PH|PL

↕ ➚ ↕ ↕ ↕ ❍ ↕ sign ext dep.
SQ = 1: squa

MPYS Reg, (Ri), SQ0010010Srrrrpppp 1 9 X = (Ri) {S=0}; Reg {S=1}
Y = Reg
A = A - PH|PL

↕ ➚ ↕ ↕ ↕ ❍ ↕ sign ext dep.
SQ = 1: squar

MSET (Rj), (Ri), SQ 0101011SPPPPpppp 1 9 X = (Ri)
Y = (Rj) {S=0}; (Ri) {S=1}

❍ ❍ ❍ ❍ ❍ ❍ ↕ SQ = 1: squar

MSET Reg, (Ri), SQ0100010Srrrrpppp 1 9 X = (Ri) {S=0}; Reg {S=1}
Y = Reg

❍ ❍ ❍ ❍ ❍ ❍ ↕ SQ = 1: squa

MODR Rj, Ri 00010110PPPPpppp 1 1 Ri = Ri mod; Rj = Rj mod ❍ ❍ ❍ ❍ ❍ ❍ ↕

Instruction Instruction code # C Operation N V Z C E L R Comment
Ref.Nr.: 441-DS-10 Page 13 of 15

INICORE AG iniDSP data sheet

on SM

 AL

/7+)

xt.

xt.

xt.

xt.

xt.

xt.

xt.
Comments:

A Represents extended accumulator (AE|AH) or (AE|AH|AL)
a 1 = write A with option in MUL
C Select Carry: ‘0’: ignore C flag; ‘1’: add/sub C flag
RRRRDestination register
rrrr Source register
PPPPAddress pointer use, PPPP = Ri / Rj
ppppPPPPAddress pointer use, pppp = Ri, PPPP = Rj
pP Pointer use, pP = Ri / Rj
B Data RAM bank, 0=i, 1=j

MUL A,P,Cond 0100111000Pacccc 1 1 write A, P with X*Y ❍ ❍ ❍ ❍ ↕ ❍ ❍ sign ext dep.

NEG A, Cond, DW 0110111M1110cccc 1 2 A = NEG(A) ↕ ➚ ↕ ❍ ↕ ❍ ❍ DW = 1: incl.

OR A, Reg 110000000000rrrr 1 1 AH = AH or Reg ❍ ❍ ↕ ❍ ↕ ➚ ❍

OR A, (Rij) 1100001B0000PPPP 1 1 AH = AH or (Rij) ❍ ❍ ↕ ❍ ↕ ❍ ↕

OR A, DRAM, B 1100011BDDDDDDDD1 1 AH = AH or (DRAM) ❍ ❍ ↕ ❍ ↕ ❍ ❍

OR A, (Rij)p 1100101B0000PPPP 2 3 AH = AH or (Rij)p ❍ ❍ ↕ ❍ ↕ ❍ ↕

OR A, Rij 1101001B000000pP 1 1 AH = AH or Rij ❍ ❍ ↕ ❍ ↕ ❍ ❍

ORI A, IMM 1100100000000000
IIIIIIIIIIIIIIII

2 5 AH = AH or IMM ❍ ❍ ↕ ❍ ↕ ❍ ❍

ORSI A, SIMM 110110SSSSSSSSSS 1 1 AH = AH or SIMM ❍ ❍ ↕ ❍ ↕ ❍ ❍

REP n 010110SSSSSSSSSS 1 10 Repeat next instr. SIMM x ❍ ❍ ❍ ❍ ❍ ❍ ❍

RES AH, Bit 101011100001bbbb 1 1 Bit of AH = 0 ❍ ❍ ↕ ❍ ↕ ❍ ❍

RES Reg, Bit 10101110RRRRbbbb 2 6 Bit of Reg = 0 ❍ ❍ ↕ ❍ ↕ ❍ ❍

RES (Rij), Bit 1010110BPPPPbbbb 2 6 Bit of (Rij) = 0 ❍ ❍ ↕ ❍ ❍ ❍ ↕

RET 0000001B01010111 2 4 PC = (R3/R7+) ❍ ❍ ❍ ❍ ❍ ❍ ↕ = LD PC, (R3

RND A 1001000000000000 1 1 Round A with AL(15) ↕ ➚ ↕ ↕ ↕ ❍ ❍

SET AH, Bit 110011100001bbbb 1 1 Bit of AH = 1 ❍ ❍ ↕ ❍ ↕ ❍ ❍

SET Reg, Bit 11001110RRRRbbbb 2 6 Bit of Reg = 1 ❍ ❍ ↕ ❍ ↕ ❍ ❍

SET (Rij), Bit 1100110BPPPPbbbb 2 6 Bit of (Rij) = 1 ❍ ❍ ↕ ❍ ❍ ❍ ↕

SHFT n 0000010000NNNNNN 1 1 Shift A by n bits ↕ ❍ ↕ ❍ ↕ ❍ ❍

SHFT A, INV,Cond 000100000I00cccc 1 1 Shift A by +/- EXP bits ↕ ❍ ↕ ❍ ↕ ❍ ❍

SLEEP 0101010100000000 1 11 Go into sleep mode ❍ ❍ ❍ ❍ ❍ ❍ ❍

SUB A, Reg, C 00100000C000rrrr 1 1 A = A - Reg - C ↕ ➚ ↕ ↕ ↕ ➚ ❍ Input is sign e

SUB A, (Rij), C 0010001BC000PPPP 1 1 A = A - (Rij) - C ↕ ➚ ↕ ↕ ↕ ❍ ↕ Input is sign e

SUB A, DRAM, B 0010011BDDDDDDDD1 1 A = A - (DRAM) ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

SUB A, (Rij)p, C 0010101BC000PPPP 2 3 A = A - (Rij)p - C ↕ ➚ ↕ ↕ ↕ ❍ ↕ Input is sign e

SUB A, Rij, C 0011001BC00000pP 1 1 A = A - Rij - C ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

SUBI A, IMM, C 00101000C1110000
IIIIIIIIIIIIIIII

2 5 A = A - IMM - C ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

SUSI A, SIMM 001110SSSSSSSSSS 1 1 A = A - SIMM ↕ ➚ ↕ ↕ ↕ ❍ ❍ Input is sign e

SWAP A, Cond 011011110111cccc 1 2 AH <=> AL ↕ ↕ ↕ ❍ ↕ ❍ ❍

TST Reg, Bit 10110100RRRRbbbb 1 1 Z = not(Bit of Reg) ❍ ❍ ↕ ❍ ❍ ❍ ❍

TST (Rij), Bit 1011000BPPPPbbbb 1 1 Z = not(Bit of (Rij)) ❍ ❍ ↕ ❍ ❍ ❍ ↕

TGL AH, Bit 111011100001bbbb 1 1 Bit of AH = inversed ❍ ❍ ↕ ❍ ↕ ❍ ❍

TGL Reg, Bit 11101110RRRRbbbb 2 6 Bit of Reg = inversed ❍ ❍ ↕ ❍ ↕ ❍ ❍

TGL (Rij), Bit 1110110BPPPPbbbb 2 6 Bit of (Rij) = inversed ❍ ❍ ↕ ❍ ❍ ❍ ↕

Instruction Instruction code # C Operation N V Z C E L R Comment
Ref.Nr.: 441-DS-10 Page 14 of 15

INICORE AG iniDSP data sheet
cccc Condition field
bbbb Bit position
DDDDDDDDDirect RAM address
IIIIIIIIIIIIIIII Immediate Data 16 bits
INNNNNNShift indicator: 0..31 = right shift; -1 .. -31 = left shift
SSSSSSSSSSshort immediate data, MSBs = ‘0’, signed or unsigned
M 1 = Double word (A= AE|AH|AL)

0=Single word (A = AE|AL)
P 1 = write PH|PL with option in DADD, DSUB, MUL
m not affected

set / cleared parameter dependent
⁄ set only, cleared by ST manipulation
= 1† When PC = Destination, add one cycle.
Ref.Nr.: 441-DS-10 Page 15 of 15

	1 Introduction
	1.1 Micro Power Aspects
	1.2 High Performance Aspects
	1.3 Fast time to production
	1.4 Smooth System Integration
	1.5 Debugging features
	2 General Architecture
	2.1 ALU
	2.1.1 Arithmetic Unit
	2.1.2 Logic Unit
	2.1.3 Barrel Shifter
	2.1.4 Floating Point Support

	2.2 Multiplier
	2.3 Memory and pointers
	2.3.1 Data Memories (RAM0, RAM1)
	2.3.2 Program Memory (PRAM)

	2.4 Repeat and Loop Support
	2.5 External resources
	2.6 Interrupts
	2.7 Sequencer
	3 Programming Model
	3.1 Accumulator
	3.2 MAC Unit
	3.3 Registers
	3.4 Status Register and Flags
	3.5 Address Pointers
	3.5.1 Pointer use
	3.5.2 Pointer loop definition
	3.5.3 Configure pointers
	3.5.4 Pointer examples

	4 Instruction set
	4.1 Alphabetical list of instructions:

