

D atasheet

iniCAN
CONTROLLER AREA NETWORK

PROTOCOL CONTROLLER CORE

Revision 2.1.0

INICORE INC.
5600 Mowry School Road
Suite 180
Newark, CA 94560
t: 510 445 1529 f: 510 656 0995 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 1 - 2 0 2 1 IN IC O R E IN C .

D atasheet

iniCAN
CONTROLLER AREA NETWORK

PROTOCOL CONTROLLER CORE

Revision 2.1.0

INICORE INC.
5600 Mowry School Road
Suite 180
Newark, CA 94560
t: 510 445 1529 f: 510 656 0995 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 1 - 2 0 2 1 IN IC O R E IN C .

in iC A N D a ta s h e e t

Ta b le o f C o n te n ts

1 OVERVIEW... 4
1.1 Applications...4
1.2 Features..4
1.3 Block Diagram...5

2 SIGNAL DESCRIPTIONS... 6
2.1 I/O Ports..6
2.2 I/O Description..7
2.2.1 Global Signals..7
2.2.2 CAN Controller Configuration...7

CAN Bit-Timing Configuration..8
CAN Bit-Rate...9
Test Modes Overview..10

2.2.3 Start – Stop Control..10
2.2.4 Status and Error Counters..11
2.2.5 Interrupt Events..12
2.2.6 CAN Frame Reference...13
2.2.7 Transmit Interface..14

Message transmit procedure...15
Message abort procedure..15

2.2.8 Receive Interface...17
Message Reception...18

2.3 CANbus...19

3 TOP-LEVEL GENERICS/PARAMETERS.. 20

4 APPLICATION NOTES... 21
4.1 Automatic bitrate detection..21

Copyright © 2001-2021 Inicore Inc. Indexes - Page II

in iC A N D a ta s h e e t

Ta b le o f C o n te n ts

1 OVERVIEW... 4
1.1 Applications...4
1.2 Features..4
1.3 Block Diagram...5

2 SIGNAL DESCRIPTIONS... 6
2.1 I/O Ports..6
2.2 I/O Description..7
2.2.1 Global Signals..7
2.2.2 CAN Controller Configuration...7

CAN Bit-Timing Configuration..8
CAN Bit-Rate...9
Test Modes Overview..10

2.2.3 Start – Stop Control..10
2.2.4 Status and Error Counters..11
2.2.5 Interrupt Events..12
2.2.6 CAN Frame Reference...13
2.2.7 Transmit Interface..14

Message transmit procedure...15
Message abort procedure..15

2.2.8 Receive Interface...17
Message Reception...18

2.3 CANbus...19

3 TOP-LEVEL GENERICS/PARAMETERS.. 20

4 APPLICATION NOTES... 21
4.1 Automatic bitrate detection..21

Copyright © 2001-2021 Inicore Inc. Indexes - Page II

in iC A N D a ta s h e e t

Ta b le o f F ig u re s

Figure 1: Block Diagram……….5
Figure 2: Inputs and Outputs……6
Figure 3: Bit-timing configuration……..9
Figure 4: Transmission control………..15
Figure 5: Transmit message abort………16
Figure 6: Message reception………18
Figure 7: 3 Pin CANbus Interface……….19
Figure 8: 2 Pin CANbus Interface……….19
Figure 9: Automatic bitrate detection flowchart………………………………………………………………………………………21

R e v is io n H is to ry

Version Comment
2.1.0 • Added top-level generics G_DSYNCH_EBL and

G_ERROR_COUNTER_RESET
2.0.3 • Updated bitrate configuration signal description
2.0.2 • Naming inconsistencies fixed
2.0.1 • Corrected bit-mapping for cfg_testmode
2.0 • Global datasheet update

• Added test mode feature

Copyright © 2001-2021 Inicore Inc. Indexes - Page III

in iC A N D a ta s h e e t

Ta b le o f F ig u re s

Figure 1: Block Diagram……….5
Figure 2: Inputs and Outputs……6
Figure 3: Bit-timing configuration……..9
Figure 4: Transmission control………..15
Figure 5: Transmit message abort………16
Figure 6: Message reception………18
Figure 7: 3 Pin CANbus Interface……….19
Figure 8: 2 Pin CANbus Interface……….19
Figure 9: Automatic bitrate detection flowchart………………………………………………………………………………………21

R e v is io n H is to ry

Version Comment
2.1.0 • Added top-level generics G_DSYNCH_EBL and

G_ERROR_COUNTER_RESET
2.0.3 • Updated bitrate configuration signal description
2.0.2 • Naming inconsistencies fixed
2.0.1 • Corrected bit-mapping for cfg_testmode
2.0 • Global datasheet update

• Added test mode feature

Copyright © 2001-2021 Inicore Inc. Indexes - Page III

in iC A N D ata s h e e t

1 O v e rv ie w

The Controller Area Network (CAN) bus, originally developed for the car industry, is a fast,
reliable and cost-effective data bus for multi-master and real-time applications. In addition to
automotive applications, it is widely used in applications such as factory automation,
machine control, building automation, maritime, medical, railway and avionics. The iniCAN
core first was introduced to the market in 1994 and since then is used in a lot of different
applications.
The iniCAN core contains all the low-level CAN protocol handling. The core contains the
complete data link layer, including the framer, transmit and receive control, error handling,
error reporting and bit synchronization. Simple message level transmit and receive interfaces
facilitate smooth system integration. The core provides status on error counts and events as
well as a low-level frame reference pointer which identifies the current bit position within a
CAN frame. This feature comes in handy when developing CAN protocol analyzers or if
detailed reporting on the bit-level is required.

1.1 Applications

 Automotive
 Avionics and aerospace
 Building automation
 Entertainment
 Factory automation
 Machine control
 Science

1.2 Features

 Implementation of CAN protocol version 2.0A/B, ISO-118980-1
 Supports standard and extended identifiers
 Maximum bus speed of 1 Mbps

• Programmable pre-scaler (1-256)
• Programmable bit sampling settings according to CAN standard

 Access to internal frame reference pointer
• Indicates which bit of a CAN frame is currently on the bus

 Built-in CAN error handling
• Access to receive and transmit error counters
• Bus state: Error active, error passive, bus-off

Copyright © 2001-2021 Inicore Inc. Overview - Page 4

in iC A N D ata s h e e t

1 O v e rv ie w

The Controller Area Network (CAN) bus, originally developed for the car industry, is a fast,
reliable and cost-effective data bus for multi-master and real-time applications. In addition to
automotive applications, it is widely used in applications such as factory automation,
machine control, building automation, maritime, medical, railway and avionics. The iniCAN
core first was introduced to the market in 1994 and since then is used in a lot of different
applications.
The iniCAN core contains all the low-level CAN protocol handling. The core contains the
complete data link layer, including the framer, transmit and receive control, error handling,
error reporting and bit synchronization. Simple message level transmit and receive interfaces
facilitate smooth system integration. The core provides status on error counts and events as
well as a low-level frame reference pointer which identifies the current bit position within a
CAN frame. This feature comes in handy when developing CAN protocol analyzers or if
detailed reporting on the bit-level is required.

1.1 Applications

 Automotive
 Avionics and aerospace
 Building automation
 Entertainment
 Factory automation
 Machine control
 Science

1.2 Features

 Implementation of CAN protocol version 2.0A/B, ISO-118980-1
 Supports standard and extended identifiers
 Maximum bus speed of 1 Mbps

• Programmable pre-scaler (1-256)
• Programmable bit sampling settings according to CAN standard

 Access to internal frame reference pointer
• Indicates which bit of a CAN frame is currently on the bus

 Built-in CAN error handling
• Access to receive and transmit error counters
• Bus state: Error active, error passive, bus-off

Copyright © 2001-2021 Inicore Inc. Overview - Page 4

in iC A N D ata s h e e t

• Interrupts for CRC error, bit stuffing error, bit error, format error, arbitration loss,
and overload frame

 Parallel message level interface
• Simplifies system integration

 Test modes
• Listen only mode (controller doesn't send any messages to the bus)
• Internal loop-back (controller receives only its own messages)
• External loop-back (controller receives a copy of sent messages)

 Register based design
• Technology independent
• Full synchronous design

1.3 Block Diagram

The iniCAN core contains the low-level protocol handler. Parallel receive and transmit
message interfaces simplify system integration.

Copyright © 2001-2021 Inicore Inc. Overview - Page 5

Figure 1: Block Diagram

in iC A N D ata s h e e t

• Interrupts for CRC error, bit stuffing error, bit error, format error, arbitration loss,
and overload frame

 Parallel message level interface
• Simplifies system integration

 Test modes
• Listen only mode (controller doesn't send any messages to the bus)
• Internal loop-back (controller receives only its own messages)
• External loop-back (controller receives a copy of sent messages)

 Register based design
• Technology independent
• Full synchronous design

1.3 Block Diagram

The iniCAN core contains the low-level protocol handler. Parallel receive and transmit
message interfaces simplify system integration.

Copyright © 2001-2021 Inicore Inc. Overview - Page 5

Figure 1: Block Diagram

in iC A N D ata s h e e t

2 S ig n a l D e s c r ip tio n s

The following paragraph lists the input and output ports of the iniCAN core and provides a
detailed description of their functionality.

2.1 I/O Ports

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 6

Figure 2: Inputs and Outputs

iniCAN

tra
ns

m
it

re
ce

iv
e

st
at

us

op
er

at
io

n

ph
y

gl
ob

al

fr
am

e
re

f

clk
reset_n

tx_msg_data[63:0]
tx_msg_id[28:0]
tx_msg_dlc[3:0]
tx_msg_rtr
tx_msg_ide
tx_msg_rdy
tx_msg_req

co
nf

ig
ur

at
io

n

set_stop
clr_stop

want_stop
grant_stop

can_bus_rx
can_bus_tx
can_bus_ebl_n

rx_msg_data[63:0]
rx_msg_id[28:0]
rx_msg_dlc[3:0]
rx_msg_rtr
rx_msg_ide
rx_msg_rdy

rx_err_cnt[7:0]

rx_err_gte96
error_state[1:0]

tx_err_cnt[8:0]

tx_err_gte96

frame_ref_field[4:0]
frame_ref_bit_nr[5:0]
frame_ref_stuff_ind

frame_ref_rx_mode
frame_ref_tx_mode

in
te

rr
up

t

int_crc_err
int_form_err
int_ack_err
int_stuff_err
int_bit_err
int_arb_err
int_overload

cfg_sjw[1:0]
cfg_bitrate[7:0]
cfg_tseg1[3:0]
cfg_tseg2[2:0]
cfg_auto_restart

cfg_edge_mode
cfg_sampling

cfg_test_mode[1:0]

in iC A N D ata s h e e t

2 S ig n a l D e s c r ip tio n s

The following paragraph lists the input and output ports of the iniCAN core and provides a
detailed description of their functionality.

2.1 I/O Ports

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 6

Figure 2: Inputs and Outputs

iniCAN

tra
ns

m
it

re
ce

iv
e

st
at

us

op
er

at
io

n

ph
y

gl
ob

al

fr
am

e
re

f

clk
reset_n

tx_msg_data[63:0]
tx_msg_id[28:0]
tx_msg_dlc[3:0]
tx_msg_rtr
tx_msg_ide
tx_msg_rdy
tx_msg_req

co
nf

ig
ur

at
io

n

set_stop
clr_stop

want_stop
grant_stop

can_bus_rx
can_bus_tx
can_bus_ebl_n

rx_msg_data[63:0]
rx_msg_id[28:0]
rx_msg_dlc[3:0]
rx_msg_rtr
rx_msg_ide
rx_msg_rdy

rx_err_cnt[7:0]

rx_err_gte96
error_state[1:0]

tx_err_cnt[8:0]

tx_err_gte96

frame_ref_field[4:0]
frame_ref_bit_nr[5:0]
frame_ref_stuff_ind

frame_ref_rx_mode
frame_ref_tx_mode

in
te

rr
up

t

int_crc_err
int_form_err
int_ack_err
int_stuff_err
int_bit_err
int_arb_err
int_overload

cfg_sjw[1:0]
cfg_bitrate[7:0]
cfg_tseg1[3:0]
cfg_tseg2[2:0]
cfg_auto_restart

cfg_edge_mode
cfg_sampling

cfg_test_mode[1:0]

in iC A N D ata s h e e t

2.2 I/O Description

The following paragraphs list the inputs and outputs of the CAN controller and provides an
overview of their functionality.

2.2 .1 Global Signals

The module is initialized with one asynchronous, active low reset input. All registers are
clocked with the system clock.

Pin Name Type Description
clk in System clock
reset_n in Asynchronous system reset, active low

2.2 .2 CAN Controller Confi guration

Configuration settings are static and may only be changed when the CAN controller is
stopped.

Pin Name Type Description
cfg_bitrate[7:0] in Bitrate prescaler

cfg_bitrate defines how many clock cycles a time quantum
(TQ) lasts.
00h: 1 clock cycle per TQ
01h: 2 clock cycles per TQ

FFh: 256 clock cycles per TQ

cfg_tseg1[3:0] in Time segment 1
Length of the first time segment. cfg_tseg1 = 0 and
cfg_tseg1 = 1 are not allowed!

cfg_tseg2[2:0] in Time segment 2
Length of the second time segment. cfg_tseg2 = 0 is not
allowed, cfg_tseg2 = 1 is only allowed for direct sampling
mode.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 7

in iC A N D ata s h e e t

2.2 I/O Description

The following paragraphs list the inputs and outputs of the CAN controller and provides an
overview of their functionality.

2.2 .1 Global Signals

The module is initialized with one asynchronous, active low reset input. All registers are
clocked with the system clock.

Pin Name Type Description
clk in System clock
reset_n in Asynchronous system reset, active low

2.2 .2 CAN Controller Confi guration

Configuration settings are static and may only be changed when the CAN controller is
stopped.

Pin Name Type Description
cfg_bitrate[7:0] in Bitrate prescaler

cfg_bitrate defines how many clock cycles a time quantum
(TQ) lasts.
00h: 1 clock cycle per TQ
01h: 2 clock cycles per TQ

FFh: 256 clock cycles per TQ

cfg_tseg1[3:0] in Time segment 1
Length of the first time segment. cfg_tseg1 = 0 and
cfg_tseg1 = 1 are not allowed!

cfg_tseg2[2:0] in Time segment 2
Length of the second time segment. cfg_tseg2 = 0 is not
allowed, cfg_tseg2 = 1 is only allowed for direct sampling
mode.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 7

in iC A N D ata s h e e t

Pin Name Type Description
cfg_sjw[1:0] in Synchronization jump width

Please note: sjw ≤ TSEG1 and sjw ≤ TSEG2
The effective value is the programmed value plus one.

cfg_sampling in Defines the sampling mode for the incoming message
0: One sampling point is used in the receive path
1: 3 sampling points with majority decision are used

cfg_edge_mode in Defines which edges of the incoming message are used for
resynchronization:
0: Edge from 'R' to 'D' is used for synchronization1

1: Both edges are used 'R' to 'D' and 'D' to 'R'
cfg_auto_restart in Defines if the iniCAN should automatically restart after a

bus-off
0: After bus-off, the CAN controller must be restarted 'by

hand' using the clr_stop signal. This is the
recommended setting.

1: After bus-off, the CAN controller restarts automatically
after 128 groups of 11 recessive bits.

cfg_testmode[1:0] in Test Mode Operation
0: Normal Operation
1: Listen only mode
2: External loop back
3: Internal loop back

CAN B it-Tim ing Confi guration
Using cfg_tseg1 and cfg_tseg2, the effective sampling point within a bit-time can be
selected. It is important that within a CAN network, all nodes use the same bit-rate and
therefore the same bit-timing.

1 R: Recessive level; D: Dominant level

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 8

in iC A N D ata s h e e t

Pin Name Type Description
cfg_sjw[1:0] in Synchronization jump width

Please note: sjw ≤ TSEG1 and sjw ≤ TSEG2
The effective value is the programmed value plus one.

cfg_sampling in Defines the sampling mode for the incoming message
0: One sampling point is used in the receive path
1: 3 sampling points with majority decision are used

cfg_edge_mode in Defines which edges of the incoming message are used for
resynchronization:
0: Edge from 'R' to 'D' is used for synchronization1

1: Both edges are used 'R' to 'D' and 'D' to 'R'
cfg_auto_restart in Defines if the iniCAN should automatically restart after a

bus-off
0: After bus-off, the CAN controller must be restarted 'by

hand' using the clr_stop signal. This is the
recommended setting.

1: After bus-off, the CAN controller restarts automatically
after 128 groups of 11 recessive bits.

cfg_testmode[1:0] in Test Mode Operation
0: Normal Operation
1: Listen only mode
2: External loop back
3: Internal loop back

CAN B it-Tim ing Confi guration
Using cfg_tseg1 and cfg_tseg2, the effective sampling point within a bit-time can be
selected. It is important that within a CAN network, all nodes use the same bit-rate and
therefore the same bit-timing.

1 R: Recessive level; D: Dominant level

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 8

in iC A N D ata s h e e t

A bit-time consist of following four fields:
 Sync_Seg

The synchronization segment of the bit-time is used to synchronize the various CAN
nodes on the bus. An edge is expected within this segment. It is always one time
quantum (TQ).

 Prop_Seg
The propagation time segment is used to compensate physical delay times within the
network. These delay times consist of the signal propagation time on the bus and the
internal delay time of the CAN nodes. This is programmable from 1 to 8 time quanta
(TQ)

 Phase_Seg1, Phase_Seg2
The phase buffer segment 1 and 2 are used to compensate for edge phase errors.
These segments may be lengthened or shortened by resynchronization. These
segments are programmable from 1 to 8 time quanta (TQ)

The nominal bit-time is the number of time quanta (TQ) per bit:

bit time=1TSEG1TSEG2

The configured value is always the effective value minus one:
cfg_tseg1 = TSEG1 – 1; cfg_tseg2 = TSEG2 – 1

Following restrictions need to be observed
 cfg_tseg1 = 0 and cfg_tseg1 = 1 are not allowed
 cfg_tseg2 = 0 is not allowed
 cfg_tseg2 = 1 may only be used in direct sampling mode

CAN B it-R ate
The time quantum TQ is derived from the system clock using the programmable bit-rate
prescaler:

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 9

Figure 3: Bit-timing configuration

in iC A N D ata s h e e t

A bit-time consist of following four fields:
 Sync_Seg

The synchronization segment of the bit-time is used to synchronize the various CAN
nodes on the bus. An edge is expected within this segment. It is always one time
quantum (TQ).

 Prop_Seg
The propagation time segment is used to compensate physical delay times within the
network. These delay times consist of the signal propagation time on the bus and the
internal delay time of the CAN nodes. This is programmable from 1 to 8 time quanta
(TQ)

 Phase_Seg1, Phase_Seg2
The phase buffer segment 1 and 2 are used to compensate for edge phase errors.
These segments may be lengthened or shortened by resynchronization. These
segments are programmable from 1 to 8 time quanta (TQ)

The nominal bit-time is the number of time quanta (TQ) per bit:

bit time=1TSEG1TSEG2

The configured value is always the effective value minus one:
cfg_tseg1 = TSEG1 – 1; cfg_tseg2 = TSEG2 – 1

Following restrictions need to be observed
 cfg_tseg1 = 0 and cfg_tseg1 = 1 are not allowed
 cfg_tseg2 = 0 is not allowed
 cfg_tseg2 = 1 may only be used in direct sampling mode

CAN B it-R ate
The time quantum TQ is derived from the system clock using the programmable bit-rate
prescaler:

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 9

Figure 3: Bit-timing configuration

in iC A N D ata s h e e t

TQ=
cfg _ bitrate1

f clk

The effective bit rate is

f bit rate=
1

TQ x bit time
=

f clk

cfg _ bitrate1 xbit time

Example: For a 1Mbps CAN system running at 16MHz, the bit timing parameters are:
cfg_tseg1 = 3
cfg_tseg2 = 2
cfg_bitrate = 1

Test Modes O verview
A special test mode is available for diagnostic purposes.

cfg_testmode Comment
0 Normal operation
1 Listen only mode

The CAN controller receives all bus traffic but doesn't send any
information to the bus. This feature is useful for automatic bus
speed detection.

2 External loop back
The CAN controller participates in the regular CAN transmission
and reception. Additionally, a copy of all sent messages is
received. This mode works only if at least one additional CAN
node is on the network.

3 Internal loop back
The CAN controller receives the sending data. No data is sent to
the network and no data is received.

2.2 .3 Start – Stop Control

The operating state of the iniCAN core is controlled using the clr_stop and set_stop inputs.
The stop status is reported using want_stop and grant_stop.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 10

in iC A N D ata s h e e t

TQ=
cfg _ bitrate1

f clk

The effective bit rate is

f bit rate=
1

TQ x bit time
=

f clk

cfg _ bitrate1 xbit time

Example: For a 1Mbps CAN system running at 16MHz, the bit timing parameters are:
cfg_tseg1 = 3
cfg_tseg2 = 2
cfg_bitrate = 1

Test Modes O verview
A special test mode is available for diagnostic purposes.

cfg_testmode Comment
0 Normal operation
1 Listen only mode

The CAN controller receives all bus traffic but doesn't send any
information to the bus. This feature is useful for automatic bus
speed detection.

2 External loop back
The CAN controller participates in the regular CAN transmission
and reception. Additionally, a copy of all sent messages is
received. This mode works only if at least one additional CAN
node is on the network.

3 Internal loop back
The CAN controller receives the sending data. No data is sent to
the network and no data is received.

2.2 .3 Start – Stop Control

The operating state of the iniCAN core is controlled using the clr_stop and set_stop inputs.
The stop status is reported using want_stop and grant_stop.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 10

in iC A N D ata s h e e t

Pin Name Type Description
clr_stop in Clear stop mode

Event2 sets the iniCAN in the ‘run’ mode. After reset, the
CAN changes to ‘stop’ mode after the synchronization
phase.

set_stop in Set stop mode
Event sets the iniCAN in the ‘stop’ mode, as soon as the
protocol allows it (bus idle). So no protocol errors are
generated when the CAN is stopped.

want_stop out Stop mode request pending
1: A user stop request is pending. The CAN controller will

stop as soon as possible (eg, when the bus becomes
idle)

0: Not stop request is pending
grant_stop out Stop mode request granted

1: CAN controller is in stop mode
0: CAN controller is running

2.2 .4 Status and Error Counters

These pins are used to check the status and to trace the protocol.

Pin Name Type Description
error_state[1:0] out Informs about the CAN controller error state:

“00”: error active (normal operation)
“01”: error passive
“1x”: bus off

rx_err_gte96 out Receiver error count is greater or equal to 96dec

When the receive error counter is greater or equal 96dec, this
signal is activated (= ‘1’) to indicate a highly disturbed bus.

tx_err_gte96 out Transmit error count is greater or equal to 96dec

When the transmit error counter is greater or equal 96dec,
this signal is activated (= ‘1’) to indicate a highly disturbed
bus.

2 An event is considered a signal that is high for one clock cycle.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 11

in iC A N D ata s h e e t

Pin Name Type Description
clr_stop in Clear stop mode

Event2 sets the iniCAN in the ‘run’ mode. After reset, the
CAN changes to ‘stop’ mode after the synchronization
phase.

set_stop in Set stop mode
Event sets the iniCAN in the ‘stop’ mode, as soon as the
protocol allows it (bus idle). So no protocol errors are
generated when the CAN is stopped.

want_stop out Stop mode request pending
1: A user stop request is pending. The CAN controller will

stop as soon as possible (eg, when the bus becomes
idle)

0: Not stop request is pending
grant_stop out Stop mode request granted

1: CAN controller is in stop mode
0: CAN controller is running

2.2 .4 Status and Error Counters

These pins are used to check the status and to trace the protocol.

Pin Name Type Description
error_state[1:0] out Informs about the CAN controller error state:

“00”: error active (normal operation)
“01”: error passive
“1x”: bus off

rx_err_gte96 out Receiver error count is greater or equal to 96dec

When the receive error counter is greater or equal 96dec, this
signal is activated (= ‘1’) to indicate a highly disturbed bus.

tx_err_gte96 out Transmit error count is greater or equal to 96dec

When the transmit error counter is greater or equal 96dec,
this signal is activated (= ‘1’) to indicate a highly disturbed
bus.

2 An event is considered a signal that is high for one clock cycle.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 11

in iC A N D ata s h e e t

Pin Name Type Description
rx_err_cnt[7:0] out Receive error count

The receive error counter represents the error value
according to the CAN standard. When in bus-off state, the
counter is used to count 128 times 11 recessive bits upon
which the CAN controller may be come error active again, if
enabled, by setting cfg_auto_restart.

tx_err_cnt[8:0] out Transmit error count
The transmit error counter represents the transmit error
value according to the CAN standard.

2.2 .5 Interrupt Events

Interrupt events are used to inform the system of certain low-level CAN activities:

Pin Name Type Description
int_crc_err out A CRC error was detected.
int_form_err out A CAN message form error was detected.
int_ack_err out A CAN message acknowledgment error was detected.
int_stuff_err out A bit stuffing error was detected.
int_bit_err out A bit error was detected.
int_arb_loss out An arbitration loss happened while sending a message.
int_overload out An overload frame was received.

Note: An interrupt event is valid when sampled high with the rising edge of the clock.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 12

in iC A N D ata s h e e t

Pin Name Type Description
rx_err_cnt[7:0] out Receive error count

The receive error counter represents the error value
according to the CAN standard. When in bus-off state, the
counter is used to count 128 times 11 recessive bits upon
which the CAN controller may be come error active again, if
enabled, by setting cfg_auto_restart.

tx_err_cnt[8:0] out Transmit error count
The transmit error counter represents the transmit error
value according to the CAN standard.

2.2 .5 Interrupt Events

Interrupt events are used to inform the system of certain low-level CAN activities:

Pin Name Type Description
int_crc_err out A CRC error was detected.
int_form_err out A CAN message form error was detected.
int_ack_err out A CAN message acknowledgment error was detected.
int_stuff_err out A bit stuffing error was detected.
int_bit_err out A bit error was detected.
int_arb_loss out An arbitration loss happened while sending a message.
int_overload out An overload frame was received.

Note: An interrupt event is valid when sampled high with the rising edge of the clock.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 12

in iC A N D ata s h e e t

2.2 .6 CAN Frame Reference

The CAN frame reference provides additional information about the current operation of the
CAN controller. The frame reference points to the current bit in a CAN frame and indicates
whether the controller is in receive mode or in transmit mode.
These information can be used for CAN debugging and bus analysis.

Pin Name Type Description
frame_ref_rx_mode out Active “1” when in receive mode
frame_ref_tx_mode out Active “1” when in transmit mode
frame_ref_field[4:0] out Current CAN Frame Field

00h: Stopped
01h: Synchronize
05h: Interframe
06h: Bus idle
07h: Start of frame
08h: Arbitration
09h: Control
0Ah: Data
0Bh: CRC
0Ch: Acknowledge
0Dh: End of frame
10h: Error flag
11h: Error echo
12h: Error delimiter
18h: Overload flag
19h: Overload echo
1Ah: Overload delimiter
Others: Reserved

frame_ref_bit_nr[5:0] out Actual bit number in the message field
frame_ref_stuff_ind out Active “1”when a stuff bit is inserted

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 13

in iC A N D ata s h e e t

2.2 .6 CAN Frame Reference

The CAN frame reference provides additional information about the current operation of the
CAN controller. The frame reference points to the current bit in a CAN frame and indicates
whether the controller is in receive mode or in transmit mode.
These information can be used for CAN debugging and bus analysis.

Pin Name Type Description
frame_ref_rx_mode out Active “1” when in receive mode
frame_ref_tx_mode out Active “1” when in transmit mode
frame_ref_field[4:0] out Current CAN Frame Field

00h: Stopped
01h: Synchronize
05h: Interframe
06h: Bus idle
07h: Start of frame
08h: Arbitration
09h: Control
0Ah: Data
0Bh: CRC
0Ch: Acknowledge
0Dh: End of frame
10h: Error flag
11h: Error echo
12h: Error delimiter
18h: Overload flag
19h: Overload echo
1Ah: Overload delimiter
Others: Reserved

frame_ref_bit_nr[5:0] out Actual bit number in the message field
frame_ref_stuff_ind out Active “1”when a stuff bit is inserted

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 13

in iC A N D ata s h e e t

2.2 .7 Transm it In terface

The following list contains all needed signals for transmitting messages. For sending a
message, just apply the ID, DLC, RTR, IDE and DATA. Then set tx_msg_req high and wait
until the tx_msg_rdy event indicates, that the message has been sent completely and error
free. All applied data must remain stable as long as tx_msg_req is active!

Pin Name Type Description
tx_msg_data[63:0] in Transmit data field

[63:56]: CAN byte 1
[55:48]: CAN byte 2
[47:40]: CAN byte 3
[39:32]: CAN byte 4
[31:24]: CAN byte 5
[23:16]: CAN byte 6
[15:8]: CAN byte 7
[7:0]: CAN byte 8

tx_msg_id[28:0] in Transmit identifier
For extended identifier:
[28:0]: ID bits

For standard identifier:
[28:18]: ID bits [10:0]
[17:0]: don't care

tx_msg_dlc[3:0] in Transmit Data Length Code.
Invalid values are transmitted as they are set, but the
number of data bytes is limited to eight.
0x0: Data length is 0 byte
0x1: Data length is 1 byte, data[63:56] is used
 ...
0x8: Data length is 8 bytes, data[63:0] is used
0x9-0xF: Data length is 8 bytes

tx_msg_rtr in Remote transmission request bit
0: Send a data frame
1: Send a remote frame

tx_msg_ide in The transmit extended identifier bit
0: Send a standard frame (11-bit identifier)
1: Send an extended frame (32-bit identifier)

tx_msg_rdy out Transmit message ready event
0: Transmit message not sent
1: Transmit message was sent

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 14

in iC A N D ata s h e e t

2.2 .7 Transm it In terface

The following list contains all needed signals for transmitting messages. For sending a
message, just apply the ID, DLC, RTR, IDE and DATA. Then set tx_msg_req high and wait
until the tx_msg_rdy event indicates, that the message has been sent completely and error
free. All applied data must remain stable as long as tx_msg_req is active!

Pin Name Type Description
tx_msg_data[63:0] in Transmit data field

[63:56]: CAN byte 1
[55:48]: CAN byte 2
[47:40]: CAN byte 3
[39:32]: CAN byte 4
[31:24]: CAN byte 5
[23:16]: CAN byte 6
[15:8]: CAN byte 7
[7:0]: CAN byte 8

tx_msg_id[28:0] in Transmit identifier
For extended identifier:
[28:0]: ID bits

For standard identifier:
[28:18]: ID bits [10:0]
[17:0]: don't care

tx_msg_dlc[3:0] in Transmit Data Length Code.
Invalid values are transmitted as they are set, but the
number of data bytes is limited to eight.
0x0: Data length is 0 byte
0x1: Data length is 1 byte, data[63:56] is used
 ...
0x8: Data length is 8 bytes, data[63:0] is used
0x9-0xF: Data length is 8 bytes

tx_msg_rtr in Remote transmission request bit
0: Send a data frame
1: Send a remote frame

tx_msg_ide in The transmit extended identifier bit
0: Send a standard frame (11-bit identifier)
1: Send an extended frame (32-bit identifier)

tx_msg_rdy out Transmit message ready event
0: Transmit message not sent
1: Transmit message was sent

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 14

in iC A N D ata s h e e t

Pin Name Type Description
tx_msg_req in Transmit message request

0: No transmit request is pending
1: Tx message is valid and requested to be sent

Note: While a transmit message request is pending, the
message itself may not be changed. Use tx_msg_rdy to
clear the transmit request.

Message transm it procedure

1) Apply tx_msg object (tx_msg_data, tx_msg_id, tx_msg_ide, tx_msg_dlc, and
tx_msg_rtr).

2) Asserts tx_msg_req to request transmission of tx_msg object. While tx_msg_req is
asserted, the tx_msg object may not be changed.

3) Once the bus is idle, the CAN controller starts to send the message.3

4) Upon successful transmission of the message, tx_msg_rdy is asserted for one clock
cycle.

5) The user must release tx_msg_req once tx_msg_rdy is sampled high.

Message abort procedure
As shown in previous paragraph, once the CAN message transmit request is asserted, the
message may not be modified and the message transmit request must remain asserted until
the end of the message transmission.

3 Please note that the can_bus_tx signal is only shown as illustration and the message bits are
not properly scaled to the clock signal.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 15

Figure 4: Transmission control

tx_msg object may not change while request is pending

(1)

(2)

(3) (4)

(5)

clk

tx_msg object

tx_msg_req

tx_msg_rdy

can_bus_tx

in iC A N D ata s h e e t

Pin Name Type Description
tx_msg_req in Transmit message request

0: No transmit request is pending
1: Tx message is valid and requested to be sent

Note: While a transmit message request is pending, the
message itself may not be changed. Use tx_msg_rdy to
clear the transmit request.

Message transm it procedure

1) Apply tx_msg object (tx_msg_data, tx_msg_id, tx_msg_ide, tx_msg_dlc, and
tx_msg_rtr).

2) Asserts tx_msg_req to request transmission of tx_msg object. While tx_msg_req is
asserted, the tx_msg object may not be changed.

3) Once the bus is idle, the CAN controller starts to send the message.3

4) Upon successful transmission of the message, tx_msg_rdy is asserted for one clock
cycle.

5) The user must release tx_msg_req once tx_msg_rdy is sampled high.

Message abort procedure
As shown in previous paragraph, once the CAN message transmit request is asserted, the
message may not be modified and the message transmit request must remain asserted until
the end of the message transmission.

3 Please note that the can_bus_tx signal is only shown as illustration and the message bits are
not properly scaled to the clock signal.

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 15

Figure 4: Transmission control

tx_msg object may not change while request is pending

(1)

(2)

(3) (4)

(5)

clk

tx_msg object

tx_msg_req

tx_msg_rdy

can_bus_tx

in iC A N D ata s h e e t

If the currently pending message needs to be changed (e.g., an alarm message with a higher
priority needs to be sent), then the transmit request can be released upon detection of one of
the following interrupt events:

• Arbitration loss
• Bus error

○ CRC error
○ Format error
○ Acknowledgment error
○ Bit stuffing error
○ Bit error

1) If the CAN controller detects a bus error the respective interrupt event flag is
asserted.

2) If such an error event is detected, the tx_msg_req may be released

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 16

Figure 5: Transmit message abort

tx_msg object may not change while request is pending

(1)

(2)

bus error

clk

tx_msg object

tx_msg_req

error event

tx_msg_rdy

can_bus_tx

in iC A N D ata s h e e t

If the currently pending message needs to be changed (e.g., an alarm message with a higher
priority needs to be sent), then the transmit request can be released upon detection of one of
the following interrupt events:

• Arbitration loss
• Bus error

○ CRC error
○ Format error
○ Acknowledgment error
○ Bit stuffing error
○ Bit error

1) If the CAN controller detects a bus error the respective interrupt event flag is
asserted.

2) If such an error event is detected, the tx_msg_req may be released

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 16

Figure 5: Transmit message abort

tx_msg object may not change while request is pending

(1)

(2)

bus error

clk

tx_msg object

tx_msg_req

error event

tx_msg_rdy

can_bus_tx

in iC A N D ata s h e e t

2.2 .8 Receive Interface

The following list contains all needed signals for receiving messages.

Pin Name Type Description
rx_msg_data[63:0] out Receive data

[63:56]: CAN byte 1
[55:48]: CAN byte 2
[47:40]: CAN byte 3
[39:32]: CAN byte 4
[31:24]: CAN byte 5
[23:16]: CAN byte 6
[15:8]: CAN byte 7
[7:0]: CAN byte 8

rx_msg_id[28:0] out Receive identifier
For extended identifier:
[28:0]: ID bits

For standard identifier:
[28:18]: ID bits [10:0]
[17:0]: all ones

rx_msg_dlc[3:0] out Receive data length code:
0x0: Data length is 0 byte
0x1: Data length is 1 byte, data[63:56] is valid
 ...
0x8: Data length is 8 bytes, data[63:0] is valid
0x9-0xF: Data length is 8 bytes

rx_msg_rtr out Receive remote transmission request bit:
The RTR signal is valid when rx_msg_rdy = 1
0: Received regular message
1: Received RTR message (rx_msg_data not valid)

rx_msg_ide out Receive extended identifier
The IDE signal is valid when rx_msg_rdy = 1‘
0: Received standard format message (11-bit identifier)
1: Received extended format message (29-bit identifier)

rx_msg_rdy out Receive message ready
0: rx_msg object is not valid
1: rx_msg object is valid

An event for communicating that a new message has
arrived. Use it for storing the RTR, IDE, DLC, ID and DATA
fields!

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 17

in iC A N D ata s h e e t

2.2 .8 Receive Interface

The following list contains all needed signals for receiving messages.

Pin Name Type Description
rx_msg_data[63:0] out Receive data

[63:56]: CAN byte 1
[55:48]: CAN byte 2
[47:40]: CAN byte 3
[39:32]: CAN byte 4
[31:24]: CAN byte 5
[23:16]: CAN byte 6
[15:8]: CAN byte 7
[7:0]: CAN byte 8

rx_msg_id[28:0] out Receive identifier
For extended identifier:
[28:0]: ID bits

For standard identifier:
[28:18]: ID bits [10:0]
[17:0]: all ones

rx_msg_dlc[3:0] out Receive data length code:
0x0: Data length is 0 byte
0x1: Data length is 1 byte, data[63:56] is valid
 ...
0x8: Data length is 8 bytes, data[63:0] is valid
0x9-0xF: Data length is 8 bytes

rx_msg_rtr out Receive remote transmission request bit:
The RTR signal is valid when rx_msg_rdy = 1
0: Received regular message
1: Received RTR message (rx_msg_data not valid)

rx_msg_ide out Receive extended identifier
The IDE signal is valid when rx_msg_rdy = 1‘
0: Received standard format message (11-bit identifier)
1: Received extended format message (29-bit identifier)

rx_msg_rdy out Receive message ready
0: rx_msg object is not valid
1: rx_msg object is valid

An event for communicating that a new message has
arrived. Use it for storing the RTR, IDE, DLC, ID and DATA
fields!

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 17

in iC A N D ata s h e e t

Message Reception
The following figure shows how a message is received.

1) The end of a CAN message is indicated by the acknowledgment bit
2) The CAN controller asserts rx_msg_rdy to indicate that a valid message has been

received
3) The user must register the rx_msg object upon sampling rx_msg_rdy = 1.

Afterwards, it is not guaranteed that the rx_msg object is still valid!

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 18

Figure 6: Message reception

(1)

(2)

(3)
valid

acknowledge field

can_bus_rx

can_bus_tx

clk

rx_msg_rdy

rx_msg object

in iC A N D ata s h e e t

Message Reception
The following figure shows how a message is received.

1) The end of a CAN message is indicated by the acknowledgment bit
2) The CAN controller asserts rx_msg_rdy to indicate that a valid message has been

received
3) The user must register the rx_msg object upon sampling rx_msg_rdy = 1.

Afterwards, it is not guaranteed that the rx_msg object is still valid!

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 18

Figure 6: Message reception

(1)

(2)

(3)
valid

acknowledge field

can_bus_rx

can_bus_tx

clk

rx_msg_rdy

rx_msg object

in iC A N D ata s h e e t

2.3 CANbus

Two or three I/Os are required to connect the CAN core to an external CAN transceiver.

Pin Name Type Description
can_bus_rx in CANbus receive signal

Connect to RXD output of external driver
can_bus_tx out CANbus transmit signal

Connect to TXD input of external driver
can_bus_ebl_n out CANbus transmit enable for external driver control

0: CAN controller is operational
1: CAN controller is stopped or bus-off

The following picture shows how to connect the three pins ton an CAN transceiver chip:

To minimize the number of pins used, a two port configuration is also possible:

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 19

Figure 7: 3 Pin CANbus Interface

Figure 8: 2 Pin CANbus Interface

in iC A N D ata s h e e t

2.3 CANbus

Two or three I/Os are required to connect the CAN core to an external CAN transceiver.

Pin Name Type Description
can_bus_rx in CANbus receive signal

Connect to RXD output of external driver
can_bus_tx out CANbus transmit signal

Connect to TXD input of external driver
can_bus_ebl_n out CANbus transmit enable for external driver control

0: CAN controller is operational
1: CAN controller is stopped or bus-off

The following picture shows how to connect the three pins ton an CAN transceiver chip:

To minimize the number of pins used, a two port configuration is also possible:

Copyright © 2001-2021 Inicore Inc. Signal Descriptions - Page 19

Figure 7: 3 Pin CANbus Interface

Figure 8: 2 Pin CANbus Interface

in iC A N D ata s h e e t

3 To p -L e v e l G e n e ric s /P a ra m e te rs

The behavior of the core can be customized to a particular application using a set of top-level
generics/parameters.

Name Default Description
G_ERROR_COUNT
ER_RESET

1 Error Counter Reset
When the core is started by asserting clr_stop, the
receive and transmit error counters are automatically reset.

0: The error counters preserve their value (original
implementation)

1: The error counters are reset
G_DSYNCH_EBL 0 Double Synchronization Enable

The core can be configured to use double-synchronization
on the can_bus_rx pin by setting G_DSYNCH_EBL = 1.
This feature may only be used with cfg_bitrate >= 1!

Copyright © 2001-2021 Inicore Inc. Top-Level Generics/Parameters - Page 20

in iC A N D ata s h e e t

3 To p -L e v e l G e n e ric s /P a ra m e te rs

The behavior of the core can be customized to a particular application using a set of top-level
generics/parameters.

Name Default Description
G_ERROR_COUNT
ER_RESET

1 Error Counter Reset
When the core is started by asserting clr_stop, the
receive and transmit error counters are automatically reset.

0: The error counters preserve their value (original
implementation)

1: The error counters are reset
G_DSYNCH_EBL 0 Double Synchronization Enable

The core can be configured to use double-synchronization
on the can_bus_rx pin by setting G_DSYNCH_EBL = 1.
This feature may only be used with cfg_bitrate >= 1!

Copyright © 2001-2021 Inicore Inc. Top-Level Generics/Parameters - Page 20

in iC A N D ata s h e e t

4 A p p lic a tio n N o te s

4.1 Automatic b itrate detection

Using the CAN controller's listen-only mode, non intrusive bus observation can be used to
determine the actual bitrate. During the bitrate detection, the CAN controller will listen to the
on-going CAN bus communication using a set of given bitrates and eventually will detect the
actual bitrate.
The procedure to detect the bitrate is shown in following flowchart:

Copyright © 2001-2021 Inicore Inc. Application Notes - Page 21

Figure 9: Automatic bitrate detection flowchart

in iC A N D ata s h e e t

4 A p p lic a tio n N o te s

4.1 Automatic b itrate detection

Using the CAN controller's listen-only mode, non intrusive bus observation can be used to
determine the actual bitrate. During the bitrate detection, the CAN controller will listen to the
on-going CAN bus communication using a set of given bitrates and eventually will detect the
actual bitrate.
The procedure to detect the bitrate is shown in following flowchart:

Copyright © 2001-2021 Inicore Inc. Application Notes - Page 21

Figure 9: Automatic bitrate detection flowchart

in iC A N D ata s h e e t

Inicore is a leading Intellectual Property (IP) core and design solution provider. Our mission is to
supply pre-verified, technology neutral, and reusable IP cores for a wide range of target markets
from consumer goods to avionics and aerospace.
Our IP cores are complemented by comprehensive design service offerings:

 FPGA and ASIC Turn-Key Solutions
 Embedded System Design
 IP Core Design and Integration
 Consulting Services
 ASIC to FPGA Migration Service
 Obsolete Part Replacement

We can quickly provide you with an FPGA-, SoC- or Embedded System solution, leveraging our
IP know-how and broad application-specific expertise. Our experience in microelectronic system
integration allows us to guide you through the entire design flow from concept to final products.
We help you with feasibility studies, concept analysis, system specification, design
implementation and verification. Additionally, we do custom IP and low-level software
development. We also handle everything from board design through fabrication and assembly.
Our development process is based on Structured Analysis & Structured Design (SA/SD)
methodology that we apply to FPGA as well as ASIC projects. Verification testbenches rely on
Transaction Based Verification (TBV) methods. Both these methodologies lead to reusable
design and verification components. By planning for reusability, we set a solid base for further
developments in the ever-decreasing product design - and life cycle.
Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module
implementation. It is our aim to engage with your engineering team and complement them in
order to create your FPGA based system-on-chip solutions. This assistance, added to the ability
to reuse our pre-designed and pre-verified IP cores, dramatically reduces design risks and
execution time, and helps to successfully bring your product to the market.

Visit us @ www.inicore.com

Inicore Inc. has made every attempt to ensure that the information in this document is accurate and
complete. However, Inicore Inc. assumes no responsibility for any errors, omissions, or for any
consequences resulting from the information included in this document or the equipments it accompanies.
Inicore Inc. reserves the right to make changes in its products and specifications at any time without notice.
Copyright © 2001-2021 Inicore Inc. All rights reserved.

Copyright © 2001-2021 Inicore Inc. Application Notes - Page 22

in iC A N D ata s h e e t

Inicore is a leading Intellectual Property (IP) core and design solution provider. Our mission is to
supply pre-verified, technology neutral, and reusable IP cores for a wide range of target markets
from consumer goods to avionics and aerospace.
Our IP cores are complemented by comprehensive design service offerings:

 FPGA and ASIC Turn-Key Solutions
 Embedded System Design
 IP Core Design and Integration
 Consulting Services
 ASIC to FPGA Migration Service
 Obsolete Part Replacement

We can quickly provide you with an FPGA-, SoC- or Embedded System solution, leveraging our
IP know-how and broad application-specific expertise. Our experience in microelectronic system
integration allows us to guide you through the entire design flow from concept to final products.
We help you with feasibility studies, concept analysis, system specification, design
implementation and verification. Additionally, we do custom IP and low-level software
development. We also handle everything from board design through fabrication and assembly.
Our development process is based on Structured Analysis & Structured Design (SA/SD)
methodology that we apply to FPGA as well as ASIC projects. Verification testbenches rely on
Transaction Based Verification (TBV) methods. Both these methodologies lead to reusable
design and verification components. By planning for reusability, we set a solid base for further
developments in the ever-decreasing product design - and life cycle.
Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module
implementation. It is our aim to engage with your engineering team and complement them in
order to create your FPGA based system-on-chip solutions. This assistance, added to the ability
to reuse our pre-designed and pre-verified IP cores, dramatically reduces design risks and
execution time, and helps to successfully bring your product to the market.

Visit us @ www.inicore.com

Inicore Inc. has made every attempt to ensure that the information in this document is accurate and
complete. However, Inicore Inc. assumes no responsibility for any errors, omissions, or for any
consequences resulting from the information included in this document or the equipments it accompanies.
Inicore Inc. reserves the right to make changes in its products and specifications at any time without notice.
Copyright © 2001-2021 Inicore Inc. All rights reserved.

Copyright © 2001-2021 Inicore Inc. Application Notes - Page 22

	1 Overview
	1.1 Applications
	1.2 Features
	1.3 Block Diagram

	2 Signal Descriptions
	2.1 I/O Ports
	2.2 I/O Description
	2.2.1 Global Signals
	2.2.2 CAN Controller Configuration
	CAN Bit-Timing Configuration
	CAN Bit-Rate
	Test Modes Overview

	2.2.3 Start – Stop Control
	2.2.4 Status and Error Counters
	2.2.5 Interrupt Events
	2.2.6 CAN Frame Reference
	2.2.7 Transmit Interface
	Message transmit procedure
	Message abort procedure

	2.2.8 Receive Interface
	Message Reception

	2.3 CANbus

	3 Top-Level Generics/Parameters
	4 Application Notes
	4.1 Automatic bitrate detection

