
 D atasheet

CANmodule-IIx

Version 2.7.4

INICORE INC.
5600 Mowry School Road
Suite 180
Newark, CA 94560
t: 510 445 1529 f: 510 656 0995 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 2 - 2 0 1 6 , IN IC O R E IN C .

http://www.inicore.com/

C A N m o d u le - I Ix D a ta s h e e t

Ta b le O f C o n te n ts

1 Overview.. 5

1.1 Features.. 5

1.2 Implementation Options.. 6

1.3 Block Diagram ... 7
1.3.1 On-Chip RAM.. 7

2 IO Description.. 8

2.1 Inputs – Outputs... 8

2.2 General Inputs.. 8

2.3 APB Bus Interface.. 9

2.4 CAN Bus Interface.. 10

3 Memory Map.. 11

3.1 Memory map of all internal registers:.. 11

3.2 Internal Register Description.. 12
3.2.1 Transmit Message Registers... 12

3.2.2 Rx Message Buffers.. 18

3.2.3 Acceptance Filter and Acceptance Code Mask.. 21

3.2.4 Error Status Indicators.. 23

3.2.5 Interrupt Controller.. 24

3.2.6 CAN Controller Operating Mode... 26

3.2.7 CAN Controller Configuration Register... 28
CAN Bit-Timing Configuration.. 29
CAN Bit-Rate.. 31

4 Parameters... 32

Copyright © 2002-2016, Inicore Inc. Indexes - Page II

C A N m o d u le - I Ix D a ta s h e e t

5 Application Notes.. 35

5.1 Automatic bitrate detection... 35

F ig u re In d e x
Figure 1.1: Block Diagram.. 7
Figure 2.1: Input and Outputs.. 8

Figure 2.2: CAN reset generation.. 9
Figure 2.3: 3 Pin CANbus Interface... 10
Figure 2.4: 2 Pin CANbus Interface... 10
Figure 3.1: Transmit Path... 12
Figure 3.2: Receive Path.. 18
Figure 3.3: Bit-timing configuration.. 30
Figure 5.1: Automatic bitrate detection flowchart... 35

D e fin it io n o f Term s

Following conventions are used in this document:

• Message Byte 1..8 -> D_63..D_0

• All default values are ‘0’ unless otherwise noted

• Undefined bits in read back are read as ‘0’

• Following nomenclature is used register mapping
r : Readback operation
R : Read operation
W : Write operation

• Signals ending with ‘_n’ are active low

Copyright © 2002-2016, Inicore Inc. Indexes - Page III

C A N m o d u le - I Ix D a ta s h e e t

R e v is io n H is to ry

Version Comment
2.7.4 • Added separate reset for CAN clock domain

2.7.3 • Fixed typos

• Clarified description of rx_ovr interrupt

2.7.2 • Updated CAN transceiver diagram

• Added new section parameter

• Updated description of configuration register

• Added automatic bitrate detection flowchart

2.7.1 • Removed pbenable[3:0] signal from I/O diagram

2.7.0 • Added configuration option to select endianness of CAN data field

• Refined CAN data field description

2.6.5 • Corrected interrupt control register address (page 12)

2.6.4 • Added CAN message filter example, (page 20)

• Removed readback on transmit buffers (pages 11, 14 & 15)

• Added identifier bit mapping for standard ID frames (p 13 & 18)

2.6.3 • rx_err_cnt: changed counter description, more expressive

2.6.2 • Corrected typing errors

2.6.1 • Refined DLC, RTR, and IDE bit description

• General document update

2.6.0 • Added cclk

• Corrected rx_fill_level configuration description

Copyright © 2002-2016, Inicore Inc. Indexes - Page IV

C A N m o d u le - I Ix D a ta s h e e t

1 O v e rv ie w

CANmodule-IIx is a full functional CAN controller module that contains advanced
message filtering, and receive-, and transmit buffers. It is designed to provide a low
gate-count CAN interface for FPGA and ASIC based system-on-chip (SOC) integra -
tions.

Full message filtering together with a transmit FIFO and a high priority transmit
message buffer support a wide range of applications. An AMBA Advanced Peripheral
Bus (APB) interface enables smooth integration into ARM based SOC's.

1.1 Features

The CANmodule-IIx is designed for a system-on-chip design.

Standard Compliant

• Full CAN 2.0B compliant

• Supports standard CAN baud rates including 1 Mbps

3 Programmable Acceptance Filters

• Message filter covers: ID, IDE, RTR, Data byte 1 and Data byte 2

• User selectable number of filters

Receive Path

• 32 messages deep receive FIFO

• FIFO status indicator

• System time-stamp

Transmit Path

• 16 messages deep transmit FIFO

• 1 message buffer for high priority messages to bypass transmit FIFO

• Message Arbiter

System Bus Interface

• AMBA 2.0 Advanced Peripheral Bus Interface

• 8-bit, 16-bit, or 32-bit wide data path

• Status and configuration interface

Copyright © 2002-2016, Inicore Inc. Overview - Page 5

C A N m o d u le - I Ix D a ta s h e e t

Programmable Interrupt Controller

• Local interrupt controller covering message and CAN error sources

Supports FPGA systems with two clock domains

• System clock (fast clock)

• CAN clock (slow clock)

Test and Debugging Support

• Listen only mode

• Internal loopback mode

• External loopback mode

SRAM Based Message Buffers

• Optimized for low gate-count implementation

• 100% Synchronous Design

1.2 Im plem entation Options

Several special implementation options are available for gate count optimized imple -
mentations. These options have to be configured prior to synthesizing the design
using parameters/generics.

• Configuration register read-back enable
To minimize gate count, the configuration register read-back path can be
disabled

• Two separate clock domains
A dedicated CAN clock is available when the system clock is too high for the
CAN core. This feature can be disabled by a configuration entry.

• Fixed configuration
For gate count optimized FPGA implementations, it might be desirable to set
the configuration register to a fixed value.

• Message filter support
3 local message filters can individually be selected. This provides the option of
having 0, 1, 2, or 3 CAN message filters available for the target application.
Additionally, filtering on the data field portion of the CAN message can be
disabled.

• High-priority transmit message buffer
The high-priority transmit message buffer TxMessage0 can be disabled if not
needed in the system.

Copyright © 2002-2016, Inicore Inc. Overview - Page 6

C A N m o d u le - I Ix D a ta s h e e t

Apart of the 32-bit APB interface, the core can be used in a 8-bit and 16-bit APB bus
system too. Dedicated wrappers are provided as a standard deliverable.

1.3 Block Diagram

The main building blocks are shown in the following figure:

1.3 .1 On-Chip RAM

To optimize system performance and on-chip resources, the size of the FIFOs can be
selected. Register based implementations are supported as well.

The memory resource requirements for the default configuration are as follows:

• With 32-bit wide data path: 2 x SRAM 128x32

• With 16-bit wide data path: 2 x SRAM 256x16

• With 8-bit wide data path: 2 x SRAM 512x8

Copyright © 2002-2016, Inicore Inc. Overview - Page 7

Figure 1.1: Block Diagram

iniCAN

Tx
Handler

Control and
Command

Status- and
Configuration

Int
Ctrl

RX
Handler

APB
Bus
Coupler

RAM RAM

CANmodule-IIx

Acceptance
Filter

system_time

C A N m o d u le - I Ix D a ta s h e e t

2 I O D e s c r ip tio n

The following paragraph lists the input and output ports of this core and explains their
respective functionality.

2.1 Inputs – Outputs

This picture shows the main inputs and outputs.

2.2 General Inputs

These pins are used to clock and initialize the whole core. There are no internally
generated clocks or resets.

Pin Name Type Description
pclk in System clock

cclk in CAN clock

preset_n in Asynchronous reset of system clock domain, active low

creset_n in Asynchronous reset for CAN clock domain, active low

Two different clock domains are available to help FPGA systems where the main clock
is much faster than the CAN clock. Each clock domain has its own asynchronous
reset.

Copyright © 2002-2016, Inicore Inc. IO Description - Page 8

Figure 2.1: Input and Outputs

A
PB

 B
us

In
te

rfa
ce

In
te

rr
up

t
CA

N
Bu

s

CANmodule-IIx

preset_n
pclk

paddr[6:2]
penable
psel

pwdata[31:0]
prdata[31:0]

int_n

can_tx_ebl_n
can_rx_bus
can_tx_bus

pwrite

cclk

C A N m o d u le - I Ix D a ta s h e e t

It is recommended to generate the reset for the CAN clock domain using a circuit such
as shown in figure 2.2.

2.3 APB Bus Interface

The on-chip bus interface is compliant to the AMBA 2.0 APB bus specification. The
interface is full synchronous to the system clock. The interface supports true 32-bit
access with zero wait-states. 8-bit and 16-bit access are supported through separate
byte enable signals.

Pin Name Type Description
psel in Module select signal

penable in Bus transfer enable signal

paddr[6:2] in Address bus

pwrite in Read/write signal
‘0’: read operation
‘1’: write operation

pwdata[31:0] in Write data bus

prdata[31:0] out Read data bus

int_n out Interrupt request, active low

Copyright © 2002-2016, Inicore Inc. IO Description - Page 9

Figure 2.2: CAN reset generation

C A N m o d u le - I Ix D a ta s h e e t

2.4 CAN Bus Interface

Three signals are provided to directly connect to a CANbus transceiver.

Pin Name Type Description
can_rx_bus in Local receive signal (connect to can_rx_bus of external

driver)

can_tx_bus out CANbus transmit signal, connected to external driver

can_tx_ebl_n out External driver control signal

The following picture shows how to connect the three pins to an CAN transceiver chip:

To minimize the number of pins used, a two port configuration is also possible:

Copyright © 2002-2016, Inicore Inc. IO Description - Page 10

Figure 2.3: 3 Pin CANbus Interface

Figure 2.4: 2 Pin CANbus Interface

C A N m o d u le - I Ix D a ta s h e e t

3 M em ory M ap

The table below shows the entire memory map of the CANmodule-IIx function. All
registers are 32-bit wide. Following nomenclature is used to differentiate different bus
access:

r : Data read back operation. Read back of configuration registers
R : Read operation
W : Write operation

Default value for all register if not otherwise noted is 0x00.

3.1 Memory map of all internal registers:

Address R/W Description
0x00

0x04

0x08

0x0C

W TxMessage0 Buffer

0x10

0x14

0x18

0x1C

W TxMessage FIFO

0x30

0x34

0x38

0x3C

R RxMessage Buffer

0x40

0x44

0x48

r/W Acceptance Register 0

0x4C

0x50

0x54

r/W Acceptance Register 1

0x58

0x5C

0x60

r/W Acceptance Register 2

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 11

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Description
0x64 r/W Acceptance Configuration Register

0x68 R/W Error Status Indicator

0x6C

0x70

0x74

R/W Interrupt Control

0x78 R/W CAN Controller Operating Mode

0x7C r/W CAN Controller Configuration

3.2 Internal Register Description

This paragraph shows all internal registers and describes how the CANmodule-IIx can
be used and programmed.

3.2 .1 Transm it Message Registers

This CAN controller provides two different transmit paths. One message buffer
(TxMessage0) is dedicated for high priority messages, while a second 16 message
deep buffer is organized as a FIFO.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 12

Figure 3.1: Transmit Path

Bus
Coupler

Message
Arbiter

iniCAN

CANmodule-IIx

TxMessage
FIFO

TxMessage0
CAN
BusBus

Interface

C A N m o d u le - I Ix D a ta s h e e t

Message Arbitration

A message residing in TxMessage0 is always sent prior to sending a message from
the TxMessage FIFO.

• High priority messages can always be sent

• Low priority messages can be queued to reduce CPU overhead

Register Description:

Address R/W Name Comment
0x00 W TxMessage0 TxMessage0 Buffer: Message Identifier Field

For extended identifier:
[31:3]: ID bits [28:0]
[2:0]: don't care

For standard identifier:
[31:21]: ID bits [11:0]
[20:0]: don't care

0x04 W TxMessage0 Buffer: Data low

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

 [31:24]: CAN data byte 1

 [23:16]: CAN data byte 2

 [15:8]: CAN data byte 3

 [7:0]: CAN data byte 4

swap_endian = 1:

 [31:24]: CAN data byte 4

 [23:16]: CAN data byte 3

 [15:8]: CAN data byte 2

 [7:0]: CAN data byte 1

0x08 W TxMessage0 Buffer: Data high

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

 [31:24]: CAN data byte 5

 [23:16]: CAN data byte 6

 [15:8]: CAN data byte 7

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 13

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
 [7:0]: CAN data byte 8

swap_endian = 1:

 [31:24]: CAN data byte 8

 [23:16]: CAN data byte 7

 [15:8]: CAN data byte 6

 [7:0]: CAN data byte 5

0x0C W TxMessage0 Buffer: Control Flags

[23]: WPN, Write Protect Not
'0': Bit [21:16] remain unchanged
'1': Bit [21:16] are modified. This bit is zero for

readback

[21]: RTR, Remote Bit
'1': This is an RTR message
'0': This is a standard message

[20]: IDE, Extended Identifier Bit
'1': This is an extended format message
'0': This is a standard format message

0x0C W TxMessage0 Buffer: Control Flags

[19:16]: DLC, Data Length Code.
Invalid values are transmitted as they are set,
but the number of data bytes is limited to eight.

0x0: Data length is 0 byte
0x1: Data length is 1 byte, data[63:56] is used

...
0x8: Data length is 8 bytes, data[63:0] is used
0x9-0xF: Data length is 8 bytes

TxMessage0 Buffer: Command Flags

[7]: WPN: Write protect not.
'0': Bit [0] remains unchanged
'1': Bit [0] is modified. This bit is always zero for

readback

[0]: TxReq, Transmit Request
'1': Transmit request
'0': Idle

R TxMessage0 Buffer: Control Flags

[0]: TxReq, Transmit Request

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 14

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
'1': Transmit request pending
'0': Idle

0x10 W TxMessage-
FIFO

TxMessageFIFO Buffer: Identifier

[31:0]: Message Identifier, ID bits [28:3]

[2:0]: N/A

0x14 W TxMessageFIFO Buffer: Data low

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

 [31:24]: CAN data byte 1

 [23:16]: CAN data byte 2

 [15:8]: CAN data byte 3

 [7:0]: CAN data byte 4

swap_endian = 1:

 [31:24]: CAN data byte 4

 [23:16]: CAN data byte 3

 [15:8]: CAN data byte 2

 [7:0]: CAN data byte 1

0x18 W TxMessageFIFO Buffer: Data high

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

 [31:24]: CAN data byte 5

 [23:16]: CAN data byte 6

 [15:8]: CAN data byte 7

 [7:0]: CAN data byte 8

swap_endian = 1:

 [31:24]: CAN data byte 8

 [23:16]: CAN data byte 7

 [15:8]: CAN data byte 6

 [7:0]: CAN data byte 5

0x1C W TxMessageFIFO Buffer: Control Flags

[23]: WPN, Write Protect Not

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 15

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
'0': Bit [21:16] remain unchanged
'1': Bit [21:16] are modified. This bit is zero for

readback

[21]: RTR, Remote Bit
'1': This is an RTR message
'0': This is a standard message

[20]: IDE, Extended Identifier Bit
'1': This is an extended format message
'0': This is a standard format message

[19:16]: DLC, Data Length Code.
Invalid values are transmitted as they are set,
but the number of data bytes is limited to eight.

0x0: Data length is 0 byte
0x1: Data length is 1 byte, data[63:56] is used

...
0x8: Data length is 8 bytes, data[63:0] is used
0x9-0xF: Data length is 8 bytes

[7]: WPN: Write protect not.
'0': Bit [0] remains unchanged
'1': Bit [0] is modified. This bit is always zero for

readback

[0]: TxReq, Transmit Request
 '1': Transmit request

'0': Idle

R TxMessageFIFO Buffer: Control Flags

[0]: TxReq, Transmit Request
'1': Transmit request pending
'0': Idle

1. Byte 1 is Data[63:56], Byte 2 is Data[55:48], etc.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 16

C A N m o d u le - I Ix D a ta s h e e t

Procedure for sending a message using TxMessage0

• First check that the transmit message buffer is empty. This is indicated by
TxReq = '0'.

• Write message into the transmit message holding register.

• Request transmission by setting the TxReq flag. This flag remains set as long
as the message holding registers contains this message. The content of the
message buffer must not be changed while the TxReq flag is set!

• The TxReq flag remains set as long as the message transmit request is
pending

• The internal message priority arbiter selects the message with the highest
priority to be sent next.

• The successful transfer of a message is indicated by the respective tx_xmit
interrupt and by releasing the TxReq flag.

Procedure for sending a message using TxMessageFIFO

• First check that the transmit message FIFO is empty. This is indicated by
TxReq = '0'.

• Write message into the transmit message holding FIFO.

• Request transmission by setting the TxReq flag. The content of the message
buffer must not be changed while the TxReq flag is set!

• The TxReq flag is released once a new TxMessage FIFO buffer becomes avail -
able.

• The successful transfer of a message is indicated by the tx_xmit_fifo interrupt.
Depending on the tx_level configuration settings, an additional interrupt source
tx_msg is available to indicate that the transmit FIFO is empty or below a
certain level.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 17

C A N m o d u le - I Ix D a ta s h e e t

3.2 .2 Rx Message Buffers

Received messages are stored in a 32 messages deep FIFO. Status indicators are
provided to show how many messages are available.

Time Stamp

Using an external system time reference, all incoming messages are time-stamped.
This enables the system to keep track of when a particular message arrived.

Procedure for reading received messages

The following sequence outlines the recommended Rx message handling:

• Wait for rx_msg interrupt

• MessageReadLoop:

• read message

• acknowledge ‘message read’ by writing a ‘1’ to MsgAck register

• read MsgValid; reading a ‘1’ means a new message is available

• IF MsgValid=1 THEN jump to MessageReadLoop

• Acknowledge rx_msg interrupt by writing a ‘1’ to this register location

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 18

Figure 3.2: Receive Path

CANmodule-IIx

CAN
bus

Bus
Interface

Receive
Message
Handler

on-chip
RAM

Bus
Coupler

iniCAN

R
x

F
I
F
O

C
o
n
t
r
o
l

system_time

Message
Filter

C A N m o d u le - I Ix D a ta s h e e t

Register Description:

Address R/W Name Comment
0x30 R RxMessage RxMessage Buffer: Identifier

For standard identifier:
[31:21]: Identifier bits ID[11:0]
[20:0]: fixed at one

For extended identifier:
[31:3]: ID bits [28:0]
[2:0]: fixed at one

0x34 R RxMessage Buffer: Data low

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

 [31:24]: CAN data byte 1

 [23:16]: CAN data byte 2

 [15:8]: CAN data byte 3

 [7:0]: CAN data byte 4

swap_endian = 1:

 [31:24]: CAN data byte 4

 [23:16]: CAN data byte 3

 [15:8]: CAN data byte 2

 [7:0]: CAN data byte 1

0x38 R RxMessage Buffer: Data high

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

 [31:24]: CAN data byte 5

 [23:16]: CAN data byte 6

 [15:8]: CAN data byte 7

 [7:0]: CAN data byte 8

swap_endian = 1:

 [31:24]: CAN data byte 8

 [23:16]: CAN data byte 7

 [15:8]: CAN data byte 6

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 19

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
 [7:0]: CAN data byte 5

0x3C R RxMessage Buffer: Status

[31:16]: Captured receive time.
Once a message is received, the system time
is captured and stored in this location.

[10:8]: Acceptance Filter Indicator
“xx1”: Filter 0 accepted message
“x1x”: Filter 1 accepted message
“1xx”: Filter 2 accepted message

[6]: RTR, Remote Bit

'1': This is an RTR message
'0': This is a regular message

[5]: IDE, Extended Identifier Bit
'1': This is an extended format message
'0': This is a standard format message

[4:1]: DLC, Data Length Code. Invalid values are
shown as received.
0x0: Message length is 0. data[63:0] is not valid
0x1: Message length is 1. data[63:56] is valid

...
0x8: Message length is 8. data[63:0] is valid

[0]: MsgValid, Message Valid

'0': Current message is not valid
'1': Current message is valid

0x3C W RxMessage RxMessage Buffer: Control

[31:1]: N/A

[0]: MsgAck, Message Acknowledge

'0': idle
'1': Acknowledges receipt of new message

Acknowledging a message clears the MsgValid
flag. If a new message is directly available from
the receive FIFO then this flag remains set to
indicate that an additional message is available.

2. Byte 1 is Data[63:56], Byte 2 is Data[55:48], etc.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 20

C A N m o d u le - I Ix D a ta s h e e t

3.2 .3 Acceptance F ilte r and Acceptance Code Mask

Three programmable Acceptance Mask Register (AMR) and Acceptance Code
Register (ACR) pairs are available to filter incoming messages. Each pair can be indi -
vidually enabled through an Acceptance Filter Enable (AFE) register.

Following fields are covered:

• ID

• IDE

• RTC

• DATA[63:48]

The acceptance mask register (AMR) defines whether the incoming bit is checked
against the acceptance code register (ACR).

AMR: ‘0’: The incoming bit is checked against the respective ACR. The message
is discarded when the incoming bit doesn’t match the respective ACR
flag.

‘1’: The incoming bit is don’t care.

Register Description:

Address R/W Name Comment
0x40 r/W AMR0 Acceptance Mask Register 0

[31:3]: Identifier

[2]: IDE

[1]: RTR

[0]: N/A

0x44 r/W ACR0 Acceptance Code Register 0

[31:3]: Identifier

[2]: IDE

[1]: RTR

[0]: N/A

0x48 r/W ACMR_DATA0 Acceptance Code / Mask Data Register 0

[31:16] : Acceptance Code Data Register

[15:0] : Acceptance Mask Data Register

0x4C r/W AMR1 Acceptance Mask Register 1

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 21

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
0x50 r/W ACR1 Acceptance Code Register 1

0x54 r/W ACMR_DATA1 Acceptance Code / Mask Data Register 1

0x58 r/W AMR2 Acceptance Mask Register 2

0x5C r/W ACR2 Acceptance Code Register 2

0x60 r/W ACMR_DATA2 Acceptance Code / Mask Data Register 2

0x64 r/W AFE Acceptance Filter Enable Register

[2]: AFE2 : Acceptance Filter 2 Enable bit

‘0’: Acceptance filter 2 is disabled
‘1’: Acceptance filter 2 is enabled

[1]: AFE1 : Acceptance Filter 1 Enable bit

‘0’: Acceptance filter 1 is disabled
‘1’: Acceptance filter 1 is enabled

[0]: AFE0 : Acceptance Filter 0 Enable bit

‘0’: Acceptance filter 0 is disabled
‘1’: Acceptance filter 0 is enabled

If all three message filters are disabled then no messages will be received! To receive
all messages then at least one message filter must be enabled and programmed with
all its fields set as “don’t care”.

CAN Message Filter Example:

The following example shows the acceptance register settings used to support receipt
of a CANopen TPDO1 (Transmit Process Data Object) message. In CANopen, a
widely used CAN Higher Level Protocol (HLP), the ID bits are used to select the
message type. The bit assignment is shown in following table:

CANopen Identifier

10 9 8 7 6 5 4 3 2 1 0

Function Code Node-ID

Identifier fields:

• Function Code: The function code for a TDPO1 message is 3h

• Node-ID: In our example, we use 02h as the Node ID

• IDE = '0', CANopen uses the short format message

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 22

C A N m o d u le - I Ix D a ta s h e e t

• RTR = '0', this is a regular message

To accept this message, the acceptance filter settings would look like

AMR settings:

• ID[28:18] = 0

• ID[17:0] = all ones

• IDE = 0

• RTR = 0

• DATA[63:56] = all ones

ACR settings:

• ID[28:18] = 182h

• ID[17:0] = don't care

• IDE = 0

• RTR = 0

• DATA[63:56] = don't care

3.2 .4 Error Status Ind icators

Status indicators are provided to report the CAN controller error state, receive error
count, and transmit error count. Special flags to report error counter values equal to or
in excess of 96 errors are available to indicate heavily disturbed bus situations.

Address R/W Name Comment
0x68 R/W ErrorStatus CAN Controller Error Status

[19]: rxgte96

The receiver error counter is greater or equal
96(dec)

[18]: txgte96

The transmitter error counter is greater or equal
96(dec)

[17:16]: error_stat[1:0]
The error state of the CAN node:

 “00”: Error active (normal operation)
 “01”: Error passive

“1x”: Bus off

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 23

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
0x68 R/W ErrorStatus

continued

CAN Controller Error Status

[15:8]: rx_err_cnt[7:0]

The receive error counter according to the CAN
2.0 specification. When in bus-off state, this
counter is used to count 128 groups of 11
recessive bits.

[7:0]: tx_err_cnt[7:0]

The transmit error counter according to the CAN
specification. When it is greater than 255dec, it is
fixed at 255dec.

3.2 .5 Interrupt Controller

An interrupt enable register is provided to enable a particular interrupt source. This is
done by setting this flag to ‘1’. Interrupt sources are available for regular traffic, error,
and diagnostic information.

Address R/W Name Comment
0x6C r/W Cfg_MsgTh Cfg Message Threshold

[3:2]: rx_level[1:0]: Sets the rx_msg interrupt
threshold

0: Receive FIFO not empty
1: Receive FIFO at least ¼ full
2: Receive FIFO at least ½ full
3: Receive FIFO at least ¾ full

[1:0]: tx_level[1:0]: Sets the tx_msg interrupt threshold

0: Transmit FIFO at least ¼ empty
1: Transmit FIFO at least ½ empty
2: Transmit FIFO at least ¾
3: Transmit FIFO empty

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 24

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
0x70 r/W IntEbl Interrupt Enable Register

An interrupt source is enabled by setting its respec -
tive flag to ‘1’.

[15]: rx_msg
[14]: tx_msg
[12]: tx_xmit_fifo
[11]: tx_xmit0
[10]: bus_off
[9]: crc_err
[8]: form_err
[7]: ack_err
[6]: stuff_err
[5]: bit_err
[4]: rx_ovr
[3]: ovr_load
[2]: arb_loss
[0]: int_ebl, global interrupt enable flag

‘0’: All interrupts are disabled
‘1’: Enabled interrupt sources are available

[others]: fixed to '0'

0x74 R/W IntStatus Interrupt Status Register

A pending interrupt is indicated that its respective flag
is set to ‘1’. To acknowledge an interrupt, set its flag
to ‘1’

[15]: rx_msg
[14]: tx_msg
[12]: tx_xmit_fifo
[11]: tx_xmit0
[10]: bus_off
[9]: crc_err
[8]: form_err
[7]: ack_err
[6]: stuff_errr
[5]: bit_err
[4]: rx_ovr
[3]: ovr_load
[2]: arb_loss
[others]: N/A

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 25

C A N m o d u le - I Ix D a ta s h e e t

Explanation of interrupt sources:

• rx_msg: Depending on rx_level, the selected number of messages are available
in the receive FIFO.

• tx_msg: Depending on tx_level, the selected number of transmit buffers are
empty.

• tx_xmit_fifo: Indicates that one message from the FIFO was successfully sent.

• tx_xmit0: Indicates that a message from TxMessage0 buffer was successfully
sent.

• bus_off: The CAN controller has reached the bus off state.

• crc_err, form_err, ack_err, stuff_err, bit_err: Any of the mentioned error occurred
while receiving or transmitting a message.

• rx_ovr: Receiver overrun. This Flag indicates that a new message arrived while
the receive buffer is full. The new message is discarded.

• ovr_load: The CAN controller received an overload message.

• arb_loss: An arbitration loss happened while trying to send a message.

3.2 .6 CAN Controller Operating Mode

The CANmodule can be used in different operating modes. By disabling transmitting
data, it is possible to use the CAN in listen only mode enabling features such as auto -
matic bit rate detection.

Address R/W Name Comment
0x78 R/W Command CAN Command Register

[2]: Loopback Test Mode:
'0': Normal operation
'1': Active

[1]: Listen only mode:

'0’: Active
'1’: CAN listen only: The output is held at ‘R’

level. The CAN controller is only listening.

[0]: Run/Stop mode:

‘0’: Sets the CAN controller into stop mode.
Read ‘0’ when stopped

‘1’: Sets the CAN controller into run mode.
Read ‘1’ when running.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 26

C A N m o d u le - I Ix D a ta s h e e t

Test modes overview

Using the loop back and the listen only flag, the CAN controller can perform certain
test operation:

Loop back Listen only Comment
'0' '0' Normal operation

'0' '1' Listen only mode: The CAN controller receives all bus
traffic but doesn't send any information to the bus. This
feature is useful for automatic bus speed detection.

'1' '1' Internal loop back: The CAN controller receives the
sending data. No data is sent to the network and no
data is received.

'1' '0' External loop back: The CAN controller participates in
the regular CAN transmission and reception. Further, a
copy of all sending messages is received. This mode
works only if at least one additional CAN node is on
the network.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 27

C A N m o d u le - I Ix D a ta s h e e t

3.2 .7 CAN Controller C onfiguration Register

See chapter 4 for additional information on setting time segment 1, time segment 2,
and the bit rate.

Address R/W Name Comment
0x7C r/W can_cfg CAN Controller Configuration

[24]: swap_endian
 The byte position of the CAN receive and transmit

data fields can be modified to match the endian
setting of the processor or the CAN protocol.

 0: CAN data byte position is not swapped (big
endian)

 1: CAN data byte position is swapped (little
endian)

[23:16]: cfg_bitrate[7:0]: Bitrate prescaler

cfg_bitrate defines how many clock cycles a time
quantum (TQ) lasts.

00h: 1 clock cycle per TQ
01h: 2 clock cycles per TQ

FFh: 256 clock cycles per TQ

The effective value is the programmed value plus
one.

[11:8]: cfg_tseg1: Time segment 1

Length of the first time segment. cfg_tseg1 = 0
and cfg_tseg1 = 1 are not allowed!
The effective value is the programmed value plus
one.

[7:5]: cfg_tseg2: Time segment 2

Length of the second time segment. cfg_tseg2 =
0 is not allowed, cfg_tseg2 = 1 is only allowed for
direct sampling mode.
The effective value is the programmed value plus
one.

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 28

C A N m o d u le - I Ix D a ta s h e e t

Address R/W Name Comment
0x7C r/W can_cfg

continued

CAN Controller Configuration

[4]: auto_restart:

 0: After bus off, the CAN controller must be
 restarted ‘by hand’. This is the recommended
 setting.

 1: After bus off, the CAN controller restarts auto-
 matically after 128 groups of 11 recessive bits.

[3:2]: cfg_sjw: Synchronization jump width

Please note: sjw ≤ TSEG1 and sjw ≤ TSEG2
The effective value is the programmed value plus
one.

[1]: sampling_mode:

0: One sampling point is used in the receive path

1: 3 sampling points with majority decision are
used

[0]: edge_mode:

Defines which edges of the incoming message
are used for resynchronization:

0: Edge from 'R' to 'D' is used for synchroniza-
tion1

1: Both edges are used 'R' to 'D' and 'D' to 'R'

CAN B it-Tim ing Configuration
Using cfg_tseg1 and cfg_tseg2, the effective sampling point within a bit-time can be
selected. It is important that within a CAN network, all nodes use the same bit-rate
and therefore the same bit-timing.

A bit-time consist of following four fields:

Sync_Seg
The synchronization segment of the bit-time is used to synchronize the various
CAN nodes on the bus. An edge is expected within this segment. It is always one
time quantum (TQ).

Prop_Seg
The propagation time segment is used to compensate physical delay times within

1 R: Recessive level; D: Dominant level

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 29

C A N m o d u le - I Ix D a ta s h e e t

the network. These delay times consist of the signal propagation time on the bus
and the internal delay time of the CAN nodes. This is programmable from 1 to 8
time quanta (TQ)

Phase_Seg1, Phase_Seg2
The phase buffer segment 1 and 2 are used to compensate for edge phase
errors. These segments may be lengthened or shortened by resynchronization.
These segments are programmable from 1 to 8 time quanta (TQ)

The nominal bit-time is the number of time quanta (TQ) per bit:

bit time=1$TSEG1$TSEG2
The configured value is always the effective value minus one:

cfg_tseg1 = TSEG1 – 1; cfg_tseg2 = TSEG2 – 1

Following restrictions need to be observed

cfg_tseg1 = 0 and cfg_tseg1 = 1 are not allowed

cfg_tseg2 = 0 is not allowed

cfg_tseg2 = 1 may only be used in direct sampling mode

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 30

Figure 3.3: Bit-timing configuration

C A N m o d u le - I Ix D a ta s h e e t

CAN B it-R ate
The time quantum TQ is derived from the system clock using the programmable bit-
rate prescaler:

TQ=
cfg _ bitrate$1

f clk

The effective bit rate is

f bit rate=
1

TQ x bit time
=

f clk

%cfg _ bitrate$1& xbit time

Example: For a 1Mbps CAN system running at 16MHz, the bit timing parameters are:

cfg_tseg1 = 3
cfg_tseg2 = 2
cfg_bitrate = 1

Copyright © 2002-2016, Inicore Inc. Memory Map - Page 31

C A N m o d u le - I Ix D a ta s h e e t

4 P a ra m e te rs

Some of the CANmodule-IIx features can be controlled by top-level parameters/generics.
These values are permanently set when creating the target design and can't be modified
by software.

Parameter Default
Value

Description

MSG_FILTER_0_AV 1 Receive message filter 0 available

If this message filter is not needed, it can
be automatically removed.

0: Filter is not available
1: Filter is available

MSG_FILTER_1_AV 1 Receive message filter 1 available

If this message filter is not needed, it can
be automatically removed.

0: Filter is not available
1: Filter is available

MSG_FILTER_2_AV 1 Receive message filter 2 available

If this message filter is not needed, it can
be automatically removed.

0: Filter is not available
1: Filter is available

DATA_FILTER_AV 1 Message filtering on data field

If the message filters don't use the CAN
data field bytes 0 and 1, then the
message filter can be reduced to just
use the ID field.

0: Data filter is not available
1: Data filter is available

This parameter applies to all message
filters.

TX_MSG0_AV 1 High-priority buffer TxMessage0

The high-priority buffer can be disabled if
the system doesn't use it.

0: TxMsg0 buffer is not available
1: TxMsg0 buffer is available

Copyright © 2002-2016, Inicore Inc. Parameters - Page 32

C A N m o d u le - I Ix D a ta s h e e t

Parameter Default
Value

Description

ENABLE_CLK_SYNCH_LOGIC 1 Clock domain synchronization logic

If the system clock is running higher than
what the CAN clock can do or if the
system clock can't be used to generate
an accurate CAN bitrate, then two
separate clocks may be used. In this
case, the core contains proper clock
synchronization logic to accommodate
the clock domain crossing.

0: Both clocks are on same network

1: Enable clock domain synchroniza-
tion

The synchronization logic uses dual-
stage resynchronization registers.

FIXED_CONFIG_EBL 0 Fixed configuration enable

If the core always uses the same CAN
bus configuration, a fixed setting can be
used.

0: Configuration can be set by user
1: Use fixed configuration

FIXED_CONFIG_SJW 0 Fixed configuration: Synchronization
jump width2

Valid range: 0-3

FIXED_CONFIG_BITRATE 0 Fixed configuration: Bitrate prescaler2

Valid range: 0-255

FIXED_CONFIG_TSEG1 0 Fixed configuration: Time segment 12

Valid range: 0-15

FIXED_CONFIG_TSEG2 0 Fixed configuration: Time segment 22

Valid range: 0-7

FIXED_CONFIG_AUTO_RESTART 0 Fixed configuration: Automatic restart
control2

Valid settings: 0/1

2 See paragraph CAN Controller Configuration Register on page 28 for a detailed description of
this setting.

Copyright © 2002-2016, Inicore Inc. Parameters - Page 33

C A N m o d u le - I Ix D a ta s h e e t

Parameter Default
Value

Description

FIXED_CONFIG_SAMPLING 0 Fixed configuration: Sampling mode2

Valid settings: 0/1

FIXED_CONFIG_EDGE_MODE 0 Fixed configuration: Edge mode2

Valid settings: 0/1

FIXED_CONFIG_SWAP_ENDIAN 0 Fixed configuration: Swap endian on
CAN data fields2

Valid settings: 0/1

DATA_READBACK_EBL 1 Data readback from configuration
registers

The readback data path from the config-
uration registers may be disabled. In this
case, the respective configuration bits
read 0.

0: Data readback is not enabled
1: Data readback is enabled

Note:

• The FIXED_CONFIG_XXX parameters control the reset state of their respective
configuration registers.

Copyright © 2002-2016, Inicore Inc. Parameters - Page 34

C A N m o d u le - I Ix D a ta s h e e t

5 A p p lic a tio n N o te s

5.1 Automatic b itrate detection

Using the CAN controller's listen-only mode, non intrusive bus observation can be used
to determine the actual bitrate. During the bitrate detection, the CAN controller will listen
to the on-going CAN bus communication using a set of given bitrates and eventually will
detect the actual bitrate.

The procedure to detect the bitrate is shown in following flowchart:

Copyright © 2002-2016, Inicore Inc. Application Notes - Page 35

Figure 5.1: Automatic bitrate detection flowchart

C A N m o d u le - I Ix D a ta s h e e t

Inicore is a leading Intellectual Property (IP) core and design solution provider. Our
mission is to supply pre-verified, technology neutral, and reusable IP cores for a wide
range of target markets from consumer goods to avionics and aerospace.
Our IP cores are complemented by comprehensive design service offerings:

FPGA and ASIC Turn-Key Solutions
Embedded System Design
IP Core Design and Integration
Consulting Services
ASIC to FPGA Migration Service
Obsolete Part Replacement

We can quickly provide you with an FPGA-, SoC- or Embedded System solution, lever -
aging our IP know-how and broad application-specific expertise. Our experience in micro -
electronic system integration allows us to guide you through the entire design flow from
concept to final products. We help you with feasibility studies, concept analysis, system
specification, design implementation and verification. Additionally, we do custom IP and
low-level software development. We also handle everything from board design through
fabrication and assembly.

Our development process is based on Structured Analysis & Structured Design (SA/SD)
methodology that we apply to FPGA as well as ASIC projects. Verification testbenches
rely on Transaction Based Verification (TBV) methods. Both these methodologies lead to
reusable design and verification components. By planning for reusability, we set a solid
base for further developments in the ever-decreasing product design - and life cycle.

Customer Advantages

We offer one-stop shopping for everything from the specifications to the chip or module
implementation. It is our aim to engage with your engineering team and complement
them in order to create your FPGA based system-on-chip solutions. This assistance,
added to the ability to reuse our pre-designed and pre-verified IP cores, dramatically
reduces design risks and execution time, and helps to successfully bring your product to
the market.

Visit us @ www.inicore.com

INICORE INC. has made every attempt to ensure that the information in this document is accurate and
complete. However, INICORE assumes no responsibility for any errors, omissions, or for any consequences
resulting from the information included in this document or the equipments it accompanies. INICORE reserves
the right to make changes in its products and specifications at any time without notice.

Copyright © 2002-2016 INICORE INC. All rights reserved.

Copyright © 2002-2016, Inicore Inc. Application Notes - Page 36

	1 Overview
	1.1 Features
	1.2 Implementation Options
	1.3 Block Diagram
	1.3.1 On-Chip RAM

	2 IO Description
	2.1 Inputs – Outputs
	2.2 General Inputs
	2.3 APB Bus Interface
	2.4 CAN Bus Interface

	3 Memory Map
	3.1 Memory map of all internal registers:
	3.2 Internal Register Description
	3.2.1 Transmit Message Registers
	3.2.2 Rx Message Buffers
	3.2.3 Acceptance Filter and Acceptance Code Mask
	3.2.4 Error Status Indicators
	3.2.5 Interrupt Controller
	3.2.6 CAN Controller Operating Mode
	3.2.7 CAN Controller Configuration Register
	CAN Bit-Timing Configuration
	CAN Bit-Rate

	4 Parameters
	5 Application Notes
	5.1 Automatic bitrate detection

