
 D atasheet

CANmodule-III

Version 3.0.3

INICORE INC.
5600 Mowry School Road
Suite 180
Newark, CA 94560
t: 510 445 1529 f: 510 656 0995 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 2 - 2 0 1 9 , IN IC O R E IN C .

 D atasheet

CANmodule-III

Version 3.0.3

INICORE INC.
5600 Mowry School Road
Suite 180
Newark, CA 94560
t: 510 445 1529 f: 510 656 0995 e: info@inicore.com
www.inicore.com

C O P Y R IG H T © 2 0 0 2 - 2 0 1 9 , IN IC O R E IN C .

http://www.inicore.com/

C A N m o d u le - I I I D a ta s h e e t

Ta b le O f C o n te n ts

1 Overview.. 6

1.1 Features.. 6

1.2 Block Diagram.. 8

2 IO Description... 9

2.1 Inputs – Outputs.. 9

2.2 General Inputs.. 9

2.3 APB Bus Interface.. 10

2.4 CAN Bus Interface... 10

2.5 SRAM Port.. 12

3 Programmer's Model.. 13

3.1 Memory map of all internal registers... 13

3.2 Internal Register Description.. 13
3.2.1 Interrupt Controller.. 14
 Interrupt Generation... 17

3.2.2 Buffer Status Indicators... 18

3.2.3 Error Status Indicators.. 18

3.2.4 Operating Modes.. 19
 Test modes overview... 20
 SRAM Test Mode... 20

3.2.5 CAN Configuration Register.. 23
 CAN Bit-Timing Configuration.. 25
 CAN Bit-Rate... 26

3.2.6 Tx Message Registers.. 27

3.2.7 Rx Message Buffers.. 32

3.3 Error Capture Register.. 41

4 Application Notes... 44

4.1 Automatic bitrate detection.. 44

Copyright © 2002-2019, Inicore Inc. Indexes - Page II

C A N m o d u le - I I I D a ta s h e e t

Ta b le O f C o n te n ts

1 Overview.. 6

1.1 Features.. 6

1.2 Block Diagram.. 8

2 IO Description... 9

2.1 Inputs – Outputs.. 9

2.2 General Inputs.. 9

2.3 APB Bus Interface.. 10

2.4 CAN Bus Interface... 10

2.5 SRAM Port.. 12

3 Programmer's Model.. 13

3.1 Memory map of all internal registers... 13

3.2 Internal Register Description.. 13
3.2.1 Interrupt Controller.. 14
 Interrupt Generation... 17

3.2.2 Buffer Status Indicators... 18

3.2.3 Error Status Indicators.. 18

3.2.4 Operating Modes.. 19
 Test modes overview... 20
 SRAM Test Mode... 20

3.2.5 CAN Configuration Register.. 23
 CAN Bit-Timing Configuration.. 25
 CAN Bit-Rate... 26

3.2.6 Tx Message Registers.. 27

3.2.7 Rx Message Buffers.. 32

3.3 Error Capture Register.. 41

4 Application Notes... 44

4.1 Automatic bitrate detection.. 44

Copyright © 2002-2019, Inicore Inc. Indexes - Page II

C A N m o d u le - I I I D a ta s h e e t

F ig u re In d e x
Figure 1: Block Diagram.. 8
Figure 2: Inputs and Outputs... 9
Figure 3: 3 Pin CANbus Interface.. 11
Figure 4: 2 Pin CANbus Interface.. 11
Figure 5: SRAM Connection.. 12
Figure 6: Interrupt generation.. 17
Figure 7: Bit-timing configuration... 25
Figure 8: Message Arbitration.. 27
Figure 9: Receive Message Handler.. 32
Figure 10: ECR CAN Frame Bit Mapping.. 43
Figure 11: Automatic bitrate detection flowchart.. 44

D e fin it io n o f Term s

Following conventions are used in this document:

 CAN Data Order

• CAN Data[63:56] is the 1st data byte of a CAN message

• CAN Data[55:48] is the 2nd data byte of a CAN message

• CAN Data[47:40] is the 3rd data byte of a CAN message

• CAN Data[39:32] is the 4th data byte of a CAN message

• CAN Data[31:24] is the 5th data byte of a CAN message

• CAN Data[23:16] is the 6th data byte of a CAN message

• CAN Data[15:8] is the 7th data byte of a CAN message

• CAN Data[7:0] is the 8th data byte of a CAN message

 All default values are ‘0’ unless otherwise noted
 Undefined bits in read back are read as ‘0’

 Following nomenclature is used register mapping
R : Read operation

 W : Write operation

 Signals ending with ‘_n’ are active low

Copyright © 2002-2019, Inicore Inc. Indexes - Page III

C A N m o d u le - I I I D a ta s h e e t

F ig u re In d e x
Figure 1: Block Diagram.. 8
Figure 2: Inputs and Outputs... 9
Figure 3: 3 Pin CANbus Interface.. 11
Figure 4: 2 Pin CANbus Interface.. 11
Figure 5: SRAM Connection.. 12
Figure 6: Interrupt generation.. 17
Figure 7: Bit-timing configuration... 25
Figure 8: Message Arbitration.. 27
Figure 9: Receive Message Handler.. 32
Figure 10: ECR CAN Frame Bit Mapping.. 43
Figure 11: Automatic bitrate detection flowchart.. 44

D e fin it io n o f Term s

Following conventions are used in this document:

 CAN Data Order

• CAN Data[63:56] is the 1st data byte of a CAN message

• CAN Data[55:48] is the 2nd data byte of a CAN message

• CAN Data[47:40] is the 3rd data byte of a CAN message

• CAN Data[39:32] is the 4th data byte of a CAN message

• CAN Data[31:24] is the 5th data byte of a CAN message

• CAN Data[23:16] is the 6th data byte of a CAN message

• CAN Data[15:8] is the 7th data byte of a CAN message

• CAN Data[7:0] is the 8th data byte of a CAN message

 All default values are ‘0’ unless otherwise noted
 Undefined bits in read back are read as ‘0’

 Following nomenclature is used register mapping
R : Read operation

 W : Write operation

 Signals ending with ‘_n’ are active low

Copyright © 2002-2019, Inicore Inc. Indexes - Page III

C A N m o d u le - I I I D a ta s h e e t

R e v is io n H is to ry

Version Comment
3.0.3 • Changed behavior: canbus_tx_ebl_n is asserted when core is in

listen only mode
3.0.2 • Corrected Rx/Tx mode bit location in error capture register

• Updated test mode operation description

• Updated overload interrupt description

• Added description of CAN field and bit number to error capture
register

• Stuck-at-dominant interrupt description updated
3.0.1 • Updated bit rate calculation definition

• Merged control and command register description of the Receive
Message Handler

• Merged control and command register description of the Transmit
Message Handler

• Fixed typos
3.0.0 • Added configuration option to select endianness of CAN data field

• Added single-shot transmission

• Added error capture register

• Added revision control register

• Added stuck-at-dominant interrupt

• Updated APB interface to support AMBA 3 APB Protocol

• Update description of interrupt flags
2.6.0 • Added SRAM test mode

• Refined CAN data field and length description

• Added automatic bitrate detection flowchart

• Added clarification operation of canbus_tx_ebl_n
2.5.2 • Added option to generate interrupt upon transmission of an RTR

auto-reply message
2.5.0 • Added internal and external loopback test mode

• Corrected readback value of WPN flags

Copyright © 2002-2019, Inicore Inc. Indexes - Page IV

C A N m o d u le - I I I D a ta s h e e t

R e v is io n H is to ry

Version Comment
3.0.3 • Changed behavior: canbus_tx_ebl_n is asserted when core is in

listen only mode
3.0.2 • Corrected Rx/Tx mode bit location in error capture register

• Updated test mode operation description

• Updated overload interrupt description

• Added description of CAN field and bit number to error capture
register

• Stuck-at-dominant interrupt description updated
3.0.1 • Updated bit rate calculation definition

• Merged control and command register description of the Receive
Message Handler

• Merged control and command register description of the Transmit
Message Handler

• Fixed typos
3.0.0 • Added configuration option to select endianness of CAN data field

• Added single-shot transmission

• Added error capture register

• Added revision control register

• Added stuck-at-dominant interrupt

• Updated APB interface to support AMBA 3 APB Protocol

• Update description of interrupt flags
2.6.0 • Added SRAM test mode

• Refined CAN data field and length description

• Added automatic bitrate detection flowchart

• Added clarification operation of canbus_tx_ebl_n
2.5.2 • Added option to generate interrupt upon transmission of an RTR

auto-reply message
2.5.0 • Added internal and external loopback test mode

• Corrected readback value of WPN flags

Copyright © 2002-2019, Inicore Inc. Indexes - Page IV

C A N m o d u le - I I I D a ta s h e e t

Version Comment
2.2.7 • Added CAN message filter example (page 25)
2.2.6 • rx_err_cnt: changed counter description, more expressive
2.2.5 • Error Status Registers are read only (page 18)
2.2.4 • tseg1 and tseg2, corrected bits assignments
2.2.3 • Corrected and refined Rx and Tx command and control buffer

description
2.2.2 • ABP Bus address, bits assignment corrected (page 9)
2.2.1 • Refined description of operation

• Updated signal names

• Document restructured

Copyright © 2002-2019, Inicore Inc. Indexes - Page V

C A N m o d u le - I I I D a ta s h e e t

Version Comment
2.2.7 • Added CAN message filter example (page 25)
2.2.6 • rx_err_cnt: changed counter description, more expressive
2.2.5 • Error Status Registers are read only (page 18)
2.2.4 • tseg1 and tseg2, corrected bits assignments
2.2.3 • Corrected and refined Rx and Tx command and control buffer

description
2.2.2 • ABP Bus address, bits assignment corrected (page 9)
2.2.1 • Refined description of operation

• Updated signal names

• Document restructured

Copyright © 2002-2019, Inicore Inc. Indexes - Page V

C A N m o d u le - I I I D a ta s h e e t

1 O v e rv ie w

CANmodule-III is a full functional CAN controller module that supports the concept of
mailboxes. It is compliant to the international CAN standard defined in ISO 11898-1.

It contains 16 receive buffers, each one with its own message filter, and 8 transmit
buffers with prioritized arbitration scheme. For optimal support of Higher Layer Protocols
(HLP) such as DeviceNet or SDC, the message filter covers the first two data bytes as
well.

The design is written in technology independent HDL and can be mapped to ASIC and
FPGA architectures and makes use of on-chip SRAM structures. An AMBA 3 Advanced
Peripheral Bus (APB) interface enables smooth integration into ARM based SOC’s. This
full synchronous bus interface can easily be connect to other system buses.

1.1 Features

The CANmodule-III is designed for system-on-chip integrations.

Standard Compliant
• Full CAN 2.0B compliant

• Conforms to ISO 11898-1

• Maximum baudrate of 1 Mbps with 8 MHz system clock

Receive Path
• 16 receive buffers

• Each buffer has its own message filter

• Message filter covers: ID, IDE, RTR, Data byte 1 and Data byte 2

• Message buffers can be linked together to build a bigger message array

• Automatic remote transmission request (RTR) response handler with optional
generation of RTR interrupt

Copyright © 2002-2019, Inicore Inc. Overview - Page 6

C A N m o d u le - I I I D a ta s h e e t

1 O v e rv ie w

CANmodule-III is a full functional CAN controller module that supports the concept of
mailboxes. It is compliant to the international CAN standard defined in ISO 11898-1.

It contains 16 receive buffers, each one with its own message filter, and 8 transmit
buffers with prioritized arbitration scheme. For optimal support of Higher Layer Protocols
(HLP) such as DeviceNet or SDC, the message filter covers the first two data bytes as
well.

The design is written in technology independent HDL and can be mapped to ASIC and
FPGA architectures and makes use of on-chip SRAM structures. An AMBA 3 Advanced
Peripheral Bus (APB) interface enables smooth integration into ARM based SOC’s. This
full synchronous bus interface can easily be connect to other system buses.

1.1 Features

The CANmodule-III is designed for system-on-chip integrations.

Standard Compliant
• Full CAN 2.0B compliant

• Conforms to ISO 11898-1

• Maximum baudrate of 1 Mbps with 8 MHz system clock

Receive Path
• 16 receive buffers

• Each buffer has its own message filter

• Message filter covers: ID, IDE, RTR, Data byte 1 and Data byte 2

• Message buffers can be linked together to build a bigger message array

• Automatic remote transmission request (RTR) response handler with optional
generation of RTR interrupt

Copyright © 2002-2019, Inicore Inc. Overview - Page 6

C A N m o d u le - I I I D a ta s h e e t

Transmit Path

• 8 Tx message holding registers with programmable priority arbitration

• Message abort command

• Single-shot transmission (no automatic retransmission upon error or arbitration
loss)

System Bus Interface
• AMBA 3 Advanced Peripheral Bus (APB) Interface

• Full synchronous zero wait-states interface

• Status and configuration interface

Programmable Interrupt Controller

• Local interrupt controller covering message and CAN error sources

Test and Debugging Support
• Listen only mode

• Internal loopback mode

• External loopback mode

• SRAM test mode

• Error capture register
Provides option to either

• show current bit position within CAN message

• show bit position and type of last captured CAN error

SRAM Based Message Buffers
• Optimized for low gate-count implementation

• Single port, synchronous memory based

• 100% Synchronous Design

Copyright © 2002-2019, Inicore Inc. Overview - Page 7

C A N m o d u le - I I I D a ta s h e e t

Transmit Path

• 8 Tx message holding registers with programmable priority arbitration

• Message abort command

• Single-shot transmission (no automatic retransmission upon error or arbitration
loss)

System Bus Interface
• AMBA 3 Advanced Peripheral Bus (APB) Interface

• Full synchronous zero wait-states interface

• Status and configuration interface

Programmable Interrupt Controller

• Local interrupt controller covering message and CAN error sources

Test and Debugging Support
• Listen only mode

• Internal loopback mode

• External loopback mode

• SRAM test mode

• Error capture register
Provides option to either

• show current bit position within CAN message

• show bit position and type of last captured CAN error

SRAM Based Message Buffers
• Optimized for low gate-count implementation

• Single port, synchronous memory based

• 100% Synchronous Design

Copyright © 2002-2019, Inicore Inc. Overview - Page 7

C A N m o d u le - I I I D a ta s h e e t

1.2 Block Diagram

The main building blocks are shown in the following figure:

Copyright © 2002-2019, Inicore Inc. Overview - Page 8

Figure 1: Block Diagram

CAN
Framer

Transmit
Message
Handler

Interrupt
Controller

Control and
Command

Status- and
Configuration

APB
Bus
Coupler

CANmodule-III

Receive
Message
Handler

on-chip
SRAM

Memory
Arbiter

C A N m o d u le - I I I D a ta s h e e t

1.2 Block Diagram

The main building blocks are shown in the following figure:

Copyright © 2002-2019, Inicore Inc. Overview - Page 8

Figure 1: Block Diagram

CAN
Framer

Transmit
Message
Handler

Interrupt
Controller

Control and
Command

Status- and
Configuration

APB
Bus
Coupler

CANmodule-III

Receive
Message
Handler

on-chip
SRAM

Memory
Arbiter

C A N m o d u le - I I I D a ta s h e e t

2 I O D e s c r ip tio n

The following paragraph lists the input and output ports of this core and explains their
respective functionality.

2.1 Inputs – Outputs

This figure shows the main inputs and outputs.

2.2 General Inputs

These pins are used to clock and initialize the whole core. There are no internally
generated clocks or resets.

Pin Name Type Description
pclk in System clock

preset_n in Asynchronous system reset, active low

Copyright © 2002-2019, Inicore Inc. IO Description - Page 9

Figure 2: Inputs and Outputs

canbus_rx
canbus_tx

int_n

canbus_tx_ebl_n

sram_addr[7:0]
sram_wr_data[31:0]
sram_rd_data[31:0]

sram_wr
sram_rdSR

A
M

 P
or

t
C

A
N

 b
us

In
te

rr
up

t
CANmodule-III

paddr[9:2]

psel
pwrite

penable

pwdata[31:0]
prdata[31:0]

pclk

preset_n

A
PB

 B
us

 In
te

rf
ac

e

sram_byte_ebl[3:0]

pready

C A N m o d u le - I I I D a ta s h e e t

2 I O D e s c r ip tio n

The following paragraph lists the input and output ports of this core and explains their
respective functionality.

2.1 Inputs – Outputs

This figure shows the main inputs and outputs.

2.2 General Inputs

These pins are used to clock and initialize the whole core. There are no internally
generated clocks or resets.

Pin Name Type Description
pclk in System clock

preset_n in Asynchronous system reset, active low

Copyright © 2002-2019, Inicore Inc. IO Description - Page 9

Figure 2: Inputs and Outputs

canbus_rx
canbus_tx

int_n

canbus_tx_ebl_n

sram_addr[7:0]
sram_wr_data[31:0]
sram_rd_data[31:0]

sram_wr
sram_rdSR

A
M

 P
or

t
C

A
N

 b
us

In
te

rr
up

t
CANmodule-III

paddr[9:2]

psel
pwrite

penable

pwdata[31:0]
prdata[31:0]

pclk

preset_n

A
PB

 B
us

 In
te

rf
ac

e

sram_byte_ebl[3:0]

pready

C A N m o d u le - I I I D a ta s h e e t

2.3 APB Bus Interface

The on-chip bus interface is compliant to the AMBA 3 APB bus specification1. The
interface is full synchronous to the system clock.

Pin Name Type Description
psel in Module select signal

penable in Bus transfer enable signal

paddr[9:2] in Address bus

pwrite in Read/write signal
‘0’: read operation
‘1’: write operation

pwdata[31:0] in Write data bus

prdata[31:0] out Read data bus

pready out Ready indicator

int_n out Interrupt request, active low

2.4 CAN Bus Interface

Three signals are provided to directly connect to a CANbus transceiver.

Pin Name Type Description
canbus_rx in Local receive signal (connect to can_rx_bus of external driver)

canbus_tx out CANbus transmit signal, connected to external driver

canbus_tx_ebl_n out External driver control signal

This is used to enable an external CAN transceiver.

1 For AMBA 2 APB implementations, the pready signal can be ignored as the core does not generate any
user wait-states.

Copyright © 2002-2019, Inicore Inc. IO Description - Page 10

C A N m o d u le - I I I D a ta s h e e t

2.3 APB Bus Interface

The on-chip bus interface is compliant to the AMBA 3 APB bus specification1. The
interface is full synchronous to the system clock.

Pin Name Type Description
psel in Module select signal

penable in Bus transfer enable signal

paddr[9:2] in Address bus

pwrite in Read/write signal
‘0’: read operation
‘1’: write operation

pwdata[31:0] in Write data bus

prdata[31:0] out Read data bus

pready out Ready indicator

int_n out Interrupt request, active low

2.4 CAN Bus Interface

Three signals are provided to directly connect to a CANbus transceiver.

Pin Name Type Description
canbus_rx in Local receive signal (connect to can_rx_bus of external driver)

canbus_tx out CANbus transmit signal, connected to external driver

canbus_tx_ebl_n out External driver control signal

This is used to enable an external CAN transceiver.

1 For AMBA 2 APB implementations, the pready signal can be ignored as the core does not generate any
user wait-states.

Copyright © 2002-2019, Inicore Inc. IO Description - Page 10

C A N m o d u le - I I I D a ta s h e e t

Standard CANbus transceiver chips can directly be connected to the CAN interface pins.
The following figure shows how to connect an external Phillips CAN driver.

To minimize the number of pins used, a two port configuration is also possible:

Copyright © 2002-2019, Inicore Inc. IO Description - Page 11

Figure 3: 3 Pin CANbus Interface

Figure 4: 2 Pin CANbus Interface

CANH

CANL

TxD
RxD

ReRslope*

canbus_tx

canbus_rx

canbus_tx_ebl_n

 CANmodule-III

*) See specification of third party CAN transceiver for definition of R slope.

canbus_tx

canbus_rx

canbus_tx_ebl_n

 CANmodule-III

TxD

RxD

CANH

CANL

C A N m o d u le - I I I D a ta s h e e t

Standard CANbus transceiver chips can directly be connected to the CAN interface pins.
The following figure shows how to connect an external Phillips CAN driver.

To minimize the number of pins used, a two port configuration is also possible:

Copyright © 2002-2019, Inicore Inc. IO Description - Page 11

Figure 3: 3 Pin CANbus Interface

Figure 4: 2 Pin CANbus Interface

CANH

CANL

TxD
RxD

ReRslope*

canbus_tx

canbus_rx

canbus_tx_ebl_n

 CANmodule-III

*) See specification of third party CAN transceiver for definition of R slope.

canbus_tx

canbus_rx

canbus_tx_ebl_n

 CANmodule-III

TxD

RxD

CANH

CANL

C A N m o d u le - I I I D a ta s h e e t

2.5 SRAM Port

A synchronous on-chip SRAM is used to store Rx and Tx messages. The SRAM is
external to the core so technology adaption and test strategies don’t require any
modification of the core logic. The following diagram shows how to connect the core to
the SRAM module:

SRAM Interface Pins

Pin Name Type Description
sram_addr[7:0] out SRAM address bus

sram_wr_data[31:0] in Write data bus

sram_rd_data[31:0] out Read data bus

sram_byte_ebl[3:0] out Byte valid indicator, active high

[0]: Byte valid for sram_wr_data[7:0]
[1]: Byte valid for sram_wr_data[15:8]
[2]: Byte valid for sram_wr_data[23:16]
[3]: Byte valid for sram_wr_data[31:24]

sram_wr out Write enable, active high

sram_rd out Read enable, active high

Copyright © 2002-2019, Inicore Inc. IO Description - Page 12

Figure 5: SRAM Connection

sram_addr[7:0]
sram_wr_data[31:0]
sram_rd_data[31:0]

sram_wr
sram_rd

S
R

A
M

 P
or

t

CANmodule-III

pclk

preset_n

pclk

SRAM
160x32

sram_byte_ebl[3:0]

C A N m o d u le - I I I D a ta s h e e t

2.5 SRAM Port

A synchronous on-chip SRAM is used to store Rx and Tx messages. The SRAM is
external to the core so technology adaption and test strategies don’t require any
modification of the core logic. The following diagram shows how to connect the core to
the SRAM module:

SRAM Interface Pins

Pin Name Type Description
sram_addr[7:0] out SRAM address bus

sram_wr_data[31:0] in Write data bus

sram_rd_data[31:0] out Read data bus

sram_byte_ebl[3:0] out Byte valid indicator, active high

[0]: Byte valid for sram_wr_data[7:0]
[1]: Byte valid for sram_wr_data[15:8]
[2]: Byte valid for sram_wr_data[23:16]
[3]: Byte valid for sram_wr_data[31:24]

sram_wr out Write enable, active high

sram_rd out Read enable, active high

Copyright © 2002-2019, Inicore Inc. IO Description - Page 12

Figure 5: SRAM Connection

sram_addr[7:0]
sram_wr_data[31:0]
sram_rd_data[31:0]

sram_wr
sram_rd

S
R

A
M

 P
or

t

CANmodule-III

pclk

preset_n

pclk

SRAM
160x32

sram_byte_ebl[3:0]

C A N m o d u le - I I I D a ta s h e e t

3 P ro g ram m er's M odel

The table below shows the entire memory map of the CANmodule-III function. All
registers are 32-bit wide. Following nomenclature is used to differentiate different bus
access:

R : Read operation
W : Write operation

Default value for all register if not otherwise noted is 0x00.

3.1 Memory map of all internal registers

Address Type Description
0x000 R/W Interrupt Control

0x008 R/W Buffer Status Indicators

0x00C R/W Error Status Indicators

0x010 R/W CAN Operating Mode

0x014 R/W CAN Configuration

0x018 R/W Error Capture Register

0x020 R/W TxMessage0 Buffer

0x030 R/W TxMessage1 Buffer

0x040 R/W TxMessage2 Buffer

0x050 R/W TxMessage3 Buffer

0x060 R/W TxMessage4 Buffer

0x070 R/W TxMessage5 Buffer

0x080 R/W TxMessage6 Buffer

0x090 R/W TxMessage7 Buffer

0x0A0 R/W RxMessage0 Buffer

Address Type Description
0x0C0 R/W RxMessage1 Buffer

0x0E0 R/W RxMessage2 Buffer

0x100 R/W RxMessage3 Buffer

0x120 R/W RxMessage4 Buffer

0x140 R/W RxMessage5 Buffer

0x160 R/W RxMessage6 Buffer

0x180 R/W RxMessage7 Buffer

0x1A0 R/W RxMessage8 Buffer

0x1C0 R/W RxMessage9 Buffer

0x1E0 R/W RxMessage10 Buffer

0x200 R/W RxMessage11 Buffer

0x220 R/W RxMessage12 Buffer

0x240 R/W RxMessage13 Buffer

0x260 R/W RxMessage14 Buffer

0x280 R/W RxMessage15 Buffer

3.2 Internal Register Description

This paragraph shows all internal registers and describes how the CANmodule-III can be
used and programmed.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 13

C A N m o d u le - I I I D a ta s h e e t

3 P ro g ram m er's M odel

The table below shows the entire memory map of the CANmodule-III function. All
registers are 32-bit wide. Following nomenclature is used to differentiate different bus
access:

R : Read operation
W : Write operation

Default value for all register if not otherwise noted is 0x00.

3.1 Memory map of all internal registers

Address Type Description
0x000 R/W Interrupt Control

0x008 R/W Buffer Status Indicators

0x00C R/W Error Status Indicators

0x010 R/W CAN Operating Mode

0x014 R/W CAN Configuration

0x018 R/W Error Capture Register

0x020 R/W TxMessage0 Buffer

0x030 R/W TxMessage1 Buffer

0x040 R/W TxMessage2 Buffer

0x050 R/W TxMessage3 Buffer

0x060 R/W TxMessage4 Buffer

0x070 R/W TxMessage5 Buffer

0x080 R/W TxMessage6 Buffer

0x090 R/W TxMessage7 Buffer

0x0A0 R/W RxMessage0 Buffer

Address Type Description
0x0C0 R/W RxMessage1 Buffer

0x0E0 R/W RxMessage2 Buffer

0x100 R/W RxMessage3 Buffer

0x120 R/W RxMessage4 Buffer

0x140 R/W RxMessage5 Buffer

0x160 R/W RxMessage6 Buffer

0x180 R/W RxMessage7 Buffer

0x1A0 R/W RxMessage8 Buffer

0x1C0 R/W RxMessage9 Buffer

0x1E0 R/W RxMessage10 Buffer

0x200 R/W RxMessage11 Buffer

0x220 R/W RxMessage12 Buffer

0x240 R/W RxMessage13 Buffer

0x260 R/W RxMessage14 Buffer

0x280 R/W RxMessage15 Buffer

3.2 Internal Register Description

This paragraph shows all internal registers and describes how the CANmodule-III can be
used and programmed.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 13

C A N m o d u le - I I I D a ta s h e e t

3.2 .1 Interrupt Controller

The interrupt controller contains an interrupt status and an interrupt enable register. The
interrupt status register stores internal interrupt events. Once a bit is set it remains set
until it is cleared by writing a 1 to it. The interrupt enable register has no effect on the
interrupt status register.

The interrupt enable register controls which particular bits from the interrupt status
register are used to assert the interrupt output int_n. int_n is asserted if a particular
interrupt status bit and the respective enable bit are set.

Address Name R/W Comment
0x000 IntStatus R/W Interrupt Status Register

A pending interrupt is indicated that its respective flag is
set to 1. To acknowledge an interrupt, set its flag to 1.

[15]: sst_failure: Single shot transmission failure

1: A buffer set for single shot transmission
experienced an arbitration loss or a bus error
during transmission.
The sst_failure interrupt is set as well when an
SST message is in the transmit buffer while the
CAN controller is being stopped.

0: Normal operation

[14]: stuck_at_0: Stuck at dominant error

1: Indicates if the rx input remained stuck at 0
(dominant level) for 16 consecutive bit times.
This detection is active when the CAN controller
is running.

0: Normal operation

[13]: rtr_msg: RTR auto-reply message sent

1: Indicates that a RTR auto-reply message was
sent.

0: Normal operation

[12]: rx_msg: Receive message available

1: A new message was successfully received and
stored in a receive buffer which had its RxIntEbl
flag asserted.

0: Normal operation

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 14

C A N m o d u le - I I I D a ta s h e e t

3.2 .1 Interrupt Controller

The interrupt controller contains an interrupt status and an interrupt enable register. The
interrupt status register stores internal interrupt events. Once a bit is set it remains set
until it is cleared by writing a 1 to it. The interrupt enable register has no effect on the
interrupt status register.

The interrupt enable register controls which particular bits from the interrupt status
register are used to assert the interrupt output int_n. int_n is asserted if a particular
interrupt status bit and the respective enable bit are set.

Address Name R/W Comment
0x000 IntStatus R/W Interrupt Status Register

A pending interrupt is indicated that its respective flag is
set to 1. To acknowledge an interrupt, set its flag to 1.

[15]: sst_failure: Single shot transmission failure

1: A buffer set for single shot transmission
experienced an arbitration loss or a bus error
during transmission.
The sst_failure interrupt is set as well when an
SST message is in the transmit buffer while the
CAN controller is being stopped.

0: Normal operation

[14]: stuck_at_0: Stuck at dominant error

1: Indicates if the rx input remained stuck at 0
(dominant level) for 16 consecutive bit times.
This detection is active when the CAN controller
is running.

0: Normal operation

[13]: rtr_msg: RTR auto-reply message sent

1: Indicates that a RTR auto-reply message was
sent.

0: Normal operation

[12]: rx_msg: Receive message available

1: A new message was successfully received and
stored in a receive buffer which had its RxIntEbl
flag asserted.

0: Normal operation

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 14

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x000 IntStatus

continued

R/W Interrupt Status Register (continued)

[11]: tx_msg: Message transmitted

1: A message was successfully sent from a transmit
buffer which had its TxIntEbl flag asserted.

0: Normal operation

[10]: rx_msg_loss: Received message lost

1: A newly received message couldn't be stored
because the target message buffer was full (eg,
its MsgAv flag was set).

0: Normal operation

[9]: bus_off: Bus-off

1: The CAN controller entered the bus-off error
state.

0: Normal operation

[8]: crc_err: CRC error

1: A CAN CRC error was detected

[7]: form_err: Format error

1: A CAN format error was detected

0: Normal operation

[6]: ack_err: Acknowledge error

1: A CAN message acknowledgment error was
detected

0: Normal operation

[5]: stuff_err: Bit stuffing error

1: A CAN bit stuffing error was detected

0: Normal operation

[4]: bit_err: Bit error

1: A CAN bit error was detected

0: Normal operation

[3]: ovr_load: Overload condition detected

1: A CAN overload condition was detected

0: Normal operation

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 15

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x000 IntStatus

continued

R/W Interrupt Status Register (continued)

[11]: tx_msg: Message transmitted

1: A message was successfully sent from a transmit
buffer which had its TxIntEbl flag asserted.

0: Normal operation

[10]: rx_msg_loss: Received message lost

1: A newly received message couldn't be stored
because the target message buffer was full (eg,
its MsgAv flag was set).

0: Normal operation

[9]: bus_off: Bus-off

1: The CAN controller entered the bus-off error
state.

0: Normal operation

[8]: crc_err: CRC error

1: A CAN CRC error was detected

[7]: form_err: Format error

1: A CAN format error was detected

0: Normal operation

[6]: ack_err: Acknowledge error

1: A CAN message acknowledgment error was
detected

0: Normal operation

[5]: stuff_err: Bit stuffing error

1: A CAN bit stuffing error was detected

0: Normal operation

[4]: bit_err: Bit error

1: A CAN bit error was detected

0: Normal operation

[3]: ovr_load: Overload condition detected

1: A CAN overload condition was detected

0: Normal operation

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 15

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x000 IntStatus

continued

R/W [2]: arb_loss: Arbitration loss

1: The message arbitration was lost while sending a
message. The message transmission will be
retried once the CAN bus is idle again.

0: Normal operation

[1:0]: N/A

0x004 IntEbl R/W Interrupt Enable Register

A particular interrupt source is enabled by setting its
respective flag to ‘1’.

[15]: sst_failure interrupt enable

[14]: stuck_at_0 interrupt enable

[13]: rtr_msg interrupt enable

[12]: rx_msg interrupt enable

[11]: tx_msg interrupt enable

[10]: rx_msg_loss interrupt enable

[9]: bus_off interrupt enable

[8]: crc_err interrupt enable

[7]: form_err interrupt enable

[6]: ack_err interrupt enable

[5]: stuff_err interrupt enable

[4]: bit_err interrupt enable

[3]: ovr_load interrupt enable

[2]: arb_loss interrupt enable

[1]: N/A

[0]: int_ebl, global interrupt enable flag

‘1’: Enabled interrupt sources are available

‘0’: All interrupts are disabled

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 16

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x000 IntStatus

continued

R/W [2]: arb_loss: Arbitration loss

1: The message arbitration was lost while sending a
message. The message transmission will be
retried once the CAN bus is idle again.

0: Normal operation

[1:0]: N/A

0x004 IntEbl R/W Interrupt Enable Register

A particular interrupt source is enabled by setting its
respective flag to ‘1’.

[15]: sst_failure interrupt enable

[14]: stuck_at_0 interrupt enable

[13]: rtr_msg interrupt enable

[12]: rx_msg interrupt enable

[11]: tx_msg interrupt enable

[10]: rx_msg_loss interrupt enable

[9]: bus_off interrupt enable

[8]: crc_err interrupt enable

[7]: form_err interrupt enable

[6]: ack_err interrupt enable

[5]: stuff_err interrupt enable

[4]: bit_err interrupt enable

[3]: ovr_load interrupt enable

[2]: arb_loss interrupt enable

[1]: N/A

[0]: int_ebl, global interrupt enable flag

‘1’: Enabled interrupt sources are available

‘0’: All interrupts are disabled

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 16

C A N m o d u le - I I I D a ta s h e e t

In terrupt Generation
Following figure shows how the system interrupt is generated:

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 17

Figure 6: Interrupt generation

int_n

IntEbl[int_ebl]

&

≥1

&IntEbl[arb_loss]
IntStatus[arb_loss]

&IntEbl[ovr_load]
IntStatus[ovr_load]

&IntEbl[bit_err]
IntStatus[bit_err]

&IntEbl[stuff_err]
IntStatus[stuff_err]

&IntEbl[ack_err]
IntStatus[ack_err]

&IntEbl[form_err]
IntStatus[form_err]

&IntEbl[crc_err]
IntStatus[crc_err]

&IntEbl[bus_off]
IntStatus[bus_off]

&IntEbl[rx_msg_loss]
IntStatus[rx_msg_loss]

&IntEbl[rtr_msg]
IntStatus[rtr_msg]

&IntEbl[stuck_at_0]
IntStatus[stuck_at_0]

&IntEbl[sst_failure]
IntStatus[sst_failure]

&IntEbl[rx_msg]

≥1

&RxIntEbl[RxMsg 0]
MsgAv[RxMsg 0]

&RxIntEbl[RxMsg 15]
MsgAv[RxMsg 15]

.

.

.

.

&IntEbl[tx_msg]

≥1

&TxIntEbl[TxMsg 0]
TxReq done[TxMsg 0]

&TxIntEbl[TxMsg 7]
TxReq done[TxMsg 7]

.

.

.

.

C A N m o d u le - I I I D a ta s h e e t

In terrupt Generation
Following figure shows how the system interrupt is generated:

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 17

Figure 6: Interrupt generation

int_n

IntEbl[int_ebl]

&

≥1

&IntEbl[arb_loss]
IntStatus[arb_loss]

&IntEbl[ovr_load]
IntStatus[ovr_load]

&IntEbl[bit_err]
IntStatus[bit_err]

&IntEbl[stuff_err]
IntStatus[stuff_err]

&IntEbl[ack_err]
IntStatus[ack_err]

&IntEbl[form_err]
IntStatus[form_err]

&IntEbl[crc_err]
IntStatus[crc_err]

&IntEbl[bus_off]
IntStatus[bus_off]

&IntEbl[rx_msg_loss]
IntStatus[rx_msg_loss]

&IntEbl[rtr_msg]
IntStatus[rtr_msg]

&IntEbl[stuck_at_0]
IntStatus[stuck_at_0]

&IntEbl[sst_failure]
IntStatus[sst_failure]

&IntEbl[rx_msg]

≥1

&RxIntEbl[RxMsg 0]
MsgAv[RxMsg 0]

&RxIntEbl[RxMsg 15]
MsgAv[RxMsg 15]

.

.

.

.

&IntEbl[tx_msg]

≥1

&TxIntEbl[TxMsg 0]
TxReq done[TxMsg 0]

&TxIntEbl[TxMsg 7]
TxReq done[TxMsg 7]

.

.

.

.

C A N m o d u le - I I I D a ta s h e e t

3.2 .2 Buffer Status Indicators

These status indicators bundle the respective flags from all RxMessage and TxMessage
buffers.

Address Name R/W Comment
0x008 BufferStatus R RxMessage and TxMessage Buffer Status

[23]: TxMessage7 - TxReq pending
..

[16]: TxMessage0 - TxReq pending
[15]: RxMessage15 – MsgAv
..
[0]: RxMessage0 - MsgAv

Note: All flags are read only! E.g., to acknowledge a MsgAv flag, the CPU has to directly
write to the respective RxMessage buffer.

3.2 .3 Error Status Indicators

Status indicators are provided to report the CAN controller error state, receive error
count and transmit error count. Special flags to report error counter values equal to or in
excess of 96 errors are available to indicate heavily disturbed bus situations.

Address Name R/W Comment
0x00C ErrorStatus R CAN Error Status

[19]: rxgte96

The Rx error counter is greater or equal 96dec

[18]: txgte96

The Tx error counter is greater or equal 96dec

[17:16]: error_state[1:0]

The error state of the CAN node:
 “00”: error active (normal operation)

“01”: error passive
“1x”: bus off

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 18

C A N m o d u le - I I I D a ta s h e e t

3.2 .2 Buffer Status Indicators

These status indicators bundle the respective flags from all RxMessage and TxMessage
buffers.

Address Name R/W Comment
0x008 BufferStatus R RxMessage and TxMessage Buffer Status

[23]: TxMessage7 - TxReq pending
..

[16]: TxMessage0 - TxReq pending
[15]: RxMessage15 – MsgAv
..
[0]: RxMessage0 - MsgAv

Note: All flags are read only! E.g., to acknowledge a MsgAv flag, the CPU has to directly
write to the respective RxMessage buffer.

3.2 .3 Error Status Indicators

Status indicators are provided to report the CAN controller error state, receive error
count and transmit error count. Special flags to report error counter values equal to or in
excess of 96 errors are available to indicate heavily disturbed bus situations.

Address Name R/W Comment
0x00C ErrorStatus R CAN Error Status

[19]: rxgte96

The Rx error counter is greater or equal 96dec

[18]: txgte96

The Tx error counter is greater or equal 96dec

[17:16]: error_state[1:0]

The error state of the CAN node:
 “00”: error active (normal operation)

“01”: error passive
“1x”: bus off

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 18

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x00C ErrorStatus

continued

R CAN Error Status (continued)

[15:8]: rx_err_cnt[7:0]

The receive error counter according to the CAN 2.0
specification. When in bus-off state, this counter is
used to count 128 groups of 11 recessive bits.

[7:0]: tx_err_cnt[7:0]

The transmitter error counter according to the CAN
standard. When it is greater than 255dec, it is fixed
at 255dec.

3.2 .4 Operating Modes

The CANmodule-III can be used in different operating modes. By disabling transmitting
data, it is possible to use the CAN in listen only mode, enabling features such as
automatic bit rate detection.

Before starting the CAN controller, all the CAN configuration registers have to be set
according to the target application.

Address Name R/W Comment
0x010 Command

R Revision Control Register

The following bits show the version of the CAN core in
the format
 [major version].[minor version].[revision number]

[31:28]: Major version

[27:24]: Minor version

[23:16]: Revision number

R/W CAN Command Register

[3]: SRAM test mode

0: Normal operation

1: Enable SRAM test mode

[2:1]: Test Mode

0: Normal operation

1: Listen-only mode

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 19

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x00C ErrorStatus

continued

R CAN Error Status (continued)

[15:8]: rx_err_cnt[7:0]

The receive error counter according to the CAN 2.0
specification. When in bus-off state, this counter is
used to count 128 groups of 11 recessive bits.

[7:0]: tx_err_cnt[7:0]

The transmitter error counter according to the CAN
standard. When it is greater than 255dec, it is fixed
at 255dec.

3.2 .4 Operating Modes

The CANmodule-III can be used in different operating modes. By disabling transmitting
data, it is possible to use the CAN in listen only mode, enabling features such as
automatic bit rate detection.

Before starting the CAN controller, all the CAN configuration registers have to be set
according to the target application.

Address Name R/W Comment
0x010 Command

R Revision Control Register

The following bits show the version of the CAN core in
the format
 [major version].[minor version].[revision number]

[31:28]: Major version

[27:24]: Minor version

[23:16]: Revision number

R/W CAN Command Register

[3]: SRAM test mode

0: Normal operation

1: Enable SRAM test mode

[2:1]: Test Mode

0: Normal operation

1: Listen-only mode

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 19

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x010 Command

continued

R/W CAN Command Register (continued)

2: External loopback mode

3: Internal loopback mode

[0]: Run/Stop mode

0: Sets the CAN controller into stop mode. Returns
0 when stopped.

1: Sets the CAN controller into run mode. Returns 1
when running.

Test modes overview
Using the loop back and the listen only flags, the CAN controller can perform certain test
operation:

Test Mode Comment
0 Normal operation

1 Listen only mode

The CAN controller receives all bus traffic but doesn't send any information to
the bus. This feature is useful for automatic bit-rate detection. The output is
kept at recessive ('R') level. The transmitter remains active.

2 External loop back

The CAN controller participates in the regular CAN transmission and reception.
Further, a copy of all sent messages is received. This mode works only if at
least one additional CAN node is on the network.

3 Internal loop back

The CAN controller receives its own data. No data is sent to the network and no
data form the CANbus is received. The output is kept at recessive ('R') level.

SRAM Test Mode
To support software based memory testing, the CANmodule-III core can be put into a
SRAM test mode. When this SRAM test mode is active, the CAN controller operation is
disabled and transparent access from the host interface to all SRAM memory locations
is available.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 20

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x010 Command

continued

R/W CAN Command Register (continued)

2: External loopback mode

3: Internal loopback mode

[0]: Run/Stop mode

0: Sets the CAN controller into stop mode. Returns
0 when stopped.

1: Sets the CAN controller into run mode. Returns 1
when running.

Test modes overview
Using the loop back and the listen only flags, the CAN controller can perform certain test
operation:

Test Mode Comment
0 Normal operation

1 Listen only mode

The CAN controller receives all bus traffic but doesn't send any information to
the bus. This feature is useful for automatic bit-rate detection. The output is
kept at recessive ('R') level. The transmitter remains active.

2 External loop back

The CAN controller participates in the regular CAN transmission and reception.
Further, a copy of all sent messages is received. This mode works only if at
least one additional CAN node is on the network.

3 Internal loop back

The CAN controller receives its own data. No data is sent to the network and no
data form the CANbus is received. The output is kept at recessive ('R') level.

SRAM Test Mode
To support software based memory testing, the CANmodule-III core can be put into a
SRAM test mode. When this SRAM test mode is active, the CAN controller operation is
disabled and transparent access from the host interface to all SRAM memory locations
is available.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 20

C A N m o d u le - I I I D a ta s h e e t

When in SRAM test mode,

• Transparent read and write access to all SRAM memory locations is supported

• All message buffer write protect features are disabled

• Access to receive and transmit message buffer control registers is disabled

The SRAM test mode and the CAN controller operation are mutually exclusive:

• SRAM test mode can only be enabled when the CAN controller is stopped

• The CAN controller can only be started when the SRAM test mode is not active

Following table provides the address mapping between the APB host interface and the
SRAM:

APB Address SRAM Address Description

0x020 0x000 TxObject0: Control Bits

0x024 0x001 TxObject0: Identifier Bits

0x028 0x002 TxObject0: Data High Bits

0x02C 0x003 TxObject0: Data Low Bits

0x030-0x03C 0x004-0x007 TxObject1

0x040-0x04C 0x008-0x00B TxObject2

0x050-0x05C 0x00C-0x00F TxObject3

0x060-0x06C 0x010-0x013 TxObject4

0x070-0x07C 0x014-0x017 TxObject5

0x080-0x08C 0x018-0x01B TxObject6

0x090-0x09C 0x01C-0x01F TxObject7

0x0A0 0x020 RxObject0: Control Bits

0x0A4 0x021 RxObject0: Identifier Bits

0x0A8 0x022 RxObject0: Data High Bits

0x0AC 0x023 RxObject0: Data Low Bits

0x0B0 0x024 RxObject0: AMR – ID

0x0B4 0x025 RxObject0: ACR – ID

0x0B8 0x026 RxObject0: AMR – Data

0x0BC 0x027 RxObject0: ACR – Data

0x0C0-0x0DC 0x028-0x02F Receive Message Object 1

0x0E0-0x0FC 0x030-0x037 Receive Message Object 2

0x100-0x11C 0x038-0x03F Receive Message Object 3

0x120-0x13C 0x040-0x047 Receive Message Object 4

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 21

C A N m o d u le - I I I D a ta s h e e t

When in SRAM test mode,

• Transparent read and write access to all SRAM memory locations is supported

• All message buffer write protect features are disabled

• Access to receive and transmit message buffer control registers is disabled

The SRAM test mode and the CAN controller operation are mutually exclusive:

• SRAM test mode can only be enabled when the CAN controller is stopped

• The CAN controller can only be started when the SRAM test mode is not active

Following table provides the address mapping between the APB host interface and the
SRAM:

APB Address SRAM Address Description

0x020 0x000 TxObject0: Control Bits

0x024 0x001 TxObject0: Identifier Bits

0x028 0x002 TxObject0: Data High Bits

0x02C 0x003 TxObject0: Data Low Bits

0x030-0x03C 0x004-0x007 TxObject1

0x040-0x04C 0x008-0x00B TxObject2

0x050-0x05C 0x00C-0x00F TxObject3

0x060-0x06C 0x010-0x013 TxObject4

0x070-0x07C 0x014-0x017 TxObject5

0x080-0x08C 0x018-0x01B TxObject6

0x090-0x09C 0x01C-0x01F TxObject7

0x0A0 0x020 RxObject0: Control Bits

0x0A4 0x021 RxObject0: Identifier Bits

0x0A8 0x022 RxObject0: Data High Bits

0x0AC 0x023 RxObject0: Data Low Bits

0x0B0 0x024 RxObject0: AMR – ID

0x0B4 0x025 RxObject0: ACR – ID

0x0B8 0x026 RxObject0: AMR – Data

0x0BC 0x027 RxObject0: ACR – Data

0x0C0-0x0DC 0x028-0x02F Receive Message Object 1

0x0E0-0x0FC 0x030-0x037 Receive Message Object 2

0x100-0x11C 0x038-0x03F Receive Message Object 3

0x120-0x13C 0x040-0x047 Receive Message Object 4

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 21

C A N m o d u le - I I I D a ta s h e e t

APB Address SRAM Address Description

0x140-0x15C 0x048-0x04F Receive Message Object 5

0x160-0x17C 0x050-0x057 Receive Message Object 6

0x180-0x19C 0x058-0x05F Receive Message Object 7

0x1A0-0x1BC 0x060-0x067 Receive Message Object 8

0x1C0-0x1DC 0x068-0x06F Receive Message Object 9

0x1E0-0x1FC 0x070-0x077 Receive Message Object 10

0x200-0x21C 0x078-0x07F Receive Message Object 11

0x220-0x23C 0x080-0x087 Receive Message Object 12

0x240-0x25C 0x088-0x08F Receive Message Object 13

0x260-0x27C 0x090-0x097 Receive Message Object 14

0x280-0x29C 0x098-0x09F Receive Message Object 15

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 22

C A N m o d u le - I I I D a ta s h e e t

APB Address SRAM Address Description

0x140-0x15C 0x048-0x04F Receive Message Object 5

0x160-0x17C 0x050-0x057 Receive Message Object 6

0x180-0x19C 0x058-0x05F Receive Message Object 7

0x1A0-0x1BC 0x060-0x067 Receive Message Object 8

0x1C0-0x1DC 0x068-0x06F Receive Message Object 9

0x1E0-0x1FC 0x070-0x077 Receive Message Object 10

0x200-0x21C 0x078-0x07F Receive Message Object 11

0x220-0x23C 0x080-0x087 Receive Message Object 12

0x240-0x25C 0x088-0x08F Receive Message Object 13

0x260-0x27C 0x090-0x097 Receive Message Object 14

0x280-0x29C 0x098-0x09F Receive Message Object 15

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 22

C A N m o d u le - I I I D a ta s h e e t

3.2 .5 CAN Configuration Register

The CANmodule-III has to be configured prior to its use. Following registers define the
effective CAN data rate2, CAN data synchronization, and message buffer arbitration.
These registers have to be set before the CAN controller is started.

Address Name R/W Comment
0x014 Config R/W CAN Configuration

[30:16]: cfg_bitrate[14:0]:

Prescaler for generating the time quantum which
defines the TQ:

0: One time quantum equals 1 clock cycle

1: One time quantum equals 2 clock cycles
...

32767: One time quantum equals 32768 clock
cycles

[14]: ecr_mode: Error Capture Mode

0: Free running: The ecr register shows the current
bit position within the CAN frame.

1: Capture mode: The ecr register shows the bit
position and type of the last captured CAN error.

[13]: swap_endian

The byte position of the CAN receive and transmit
data fields can be modified to match the endian
setting of the processor or the used CAN protocol.

0: CAN data byte position is not swapped (big
endian)

1: CAN data byte position is swapped (little
endian)

[12]: cfg_arbiter: Transmit Buffer Arbiter

0: Round robin arbitration

1: Fixed priority arbitration

2 Additional information on the CAN data rate settings using time segment 1 (tseg1), time segment 2
(tseg2), and bit rate are given in chapter 4.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 23

C A N m o d u le - I I I D a ta s h e e t

3.2 .5 CAN Configuration Register

The CANmodule-III has to be configured prior to its use. Following registers define the
effective CAN data rate2, CAN data synchronization, and message buffer arbitration.
These registers have to be set before the CAN controller is started.

Address Name R/W Comment
0x014 Config R/W CAN Configuration

[30:16]: cfg_bitrate[14:0]:

Prescaler for generating the time quantum which
defines the TQ:

0: One time quantum equals 1 clock cycle

1: One time quantum equals 2 clock cycles
...

32767: One time quantum equals 32768 clock
cycles

[14]: ecr_mode: Error Capture Mode

0: Free running: The ecr register shows the current
bit position within the CAN frame.

1: Capture mode: The ecr register shows the bit
position and type of the last captured CAN error.

[13]: swap_endian

The byte position of the CAN receive and transmit
data fields can be modified to match the endian
setting of the processor or the used CAN protocol.

0: CAN data byte position is not swapped (big
endian)

1: CAN data byte position is swapped (little
endian)

[12]: cfg_arbiter: Transmit Buffer Arbiter

0: Round robin arbitration

1: Fixed priority arbitration

2 Additional information on the CAN data rate settings using time segment 1 (tseg1), time segment 2
(tseg2), and bit rate are given in chapter 4.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 23

Daniel Leu

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x014 Config

continued

R/W CAN Configuration (continued)

[11:8]: cfg_tseg1: Time Segment 1

Length of the first time segment:

tseg1 = cfg_tseg1 + 1

Time segment 1 includes the propagation time.

cfg_tseg1=0 and cfg_tseg1=1 are not allowed.

[7:5]: cfg_tseg2: Time Segment 2

Length of the second time segment:

tseg2 = cfg_tseg2 + 1

cfg_tseg2=0 is not allowed; cfg_tseg2=1 is only
allowed in direct sampling mode.

[4]: auto_restart

0: After bus-off, the CAN must be restarted ‘by
hand’. This is the recommended setting.

1: After bus-off, the CAN is restarting automatically
after 128 groups of 11 recessive bits

[3:2]: cfg_sjw: Synchronization Jump Width

Length of the synchronization jump width:

sjw = cfg_sjw + 1

Note: sjw ≤ tseg1 and sjw ≤ tseg2

[1]: sampling_mode: CAN Bus Bit Sampling

0: One sampling point is used in the receiver path

1: 3 sampling points with majority decision are used

[0]:edge_mode: CAN Bus Synchronization Logic

0: Edge from ‘R’ to ‘D’ is used for synchronization

1: Both edges are used

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 24

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x014 Config

continued

R/W CAN Configuration (continued)

[11:8]: cfg_tseg1: Time Segment 1

Length of the first time segment:

tseg1 = cfg_tseg1 + 1

Time segment 1 includes the propagation time.

cfg_tseg1=0 and cfg_tseg1=1 are not allowed.

[7:5]: cfg_tseg2: Time Segment 2

Length of the second time segment:

tseg2 = cfg_tseg2 + 1

cfg_tseg2=0 is not allowed; cfg_tseg2=1 is only
allowed in direct sampling mode.

[4]: auto_restart

0: After bus-off, the CAN must be restarted ‘by
hand’. This is the recommended setting.

1: After bus-off, the CAN is restarting automatically
after 128 groups of 11 recessive bits

[3:2]: cfg_sjw: Synchronization Jump Width

Length of the synchronization jump width:

sjw = cfg_sjw + 1

Note: sjw ≤ tseg1 and sjw ≤ tseg2

[1]: sampling_mode: CAN Bus Bit Sampling

0: One sampling point is used in the receiver path

1: 3 sampling points with majority decision are used

[0]:edge_mode: CAN Bus Synchronization Logic

0: Edge from ‘R’ to ‘D’ is used for synchronization

1: Both edges are used

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 24

C A N m o d u le - I I I D a ta s h e e t

CAN B it-Tim ing Configuration
Using cfg_tseg1 and cfg_tseg2, the effective sampling point within a bit-time and the
length of the bit-time field can be selected. It is important that within a CAN network, all
nodes use the same bit-rate and therefore the same bit-timing.

A bit-time consist of following four fields:

 Sync_Seg
The synchronization segment of the bit-time is used to synchronize the various
CAN nodes on the bus. An edge is expected within this segment. It is always one
time quantum (TQ).

 Prop_Seg
The propagation time segment is used to compensate physical delay times within
the network. These delay times consist of the signal propagation time on the bus
and the internal delay time of the CAN nodes. This is programmable from 1 to 8
time quanta (TQ)

 Phase_Seg1, Phase_Seg2
The phase buffer segment 1 and 2 are used to compensate for edge phase
errors. These segments may be lengthened or shortened by resynchronization.
These segments are programmable from 1 to 8 time quanta (TQ)

The nominal bit-time is the number of time quanta (TQ) per bit:

bit time=1TSEG1TSEG2
The configured value is always the effective value minus one:

cfg_tseg1 = TSEG1 – 1; cfg_tseg2 = TSEG2 – 1

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 25

Figure 7: Bit-timing configuration

C A N m o d u le - I I I D a ta s h e e t

CAN B it-Tim ing Configuration
Using cfg_tseg1 and cfg_tseg2, the effective sampling point within a bit-time and the
length of the bit-time field can be selected. It is important that within a CAN network, all
nodes use the same bit-rate and therefore the same bit-timing.

A bit-time consist of following four fields:

 Sync_Seg
The synchronization segment of the bit-time is used to synchronize the various
CAN nodes on the bus. An edge is expected within this segment. It is always one
time quantum (TQ).

 Prop_Seg
The propagation time segment is used to compensate physical delay times within
the network. These delay times consist of the signal propagation time on the bus
and the internal delay time of the CAN nodes. This is programmable from 1 to 8
time quanta (TQ)

 Phase_Seg1, Phase_Seg2
The phase buffer segment 1 and 2 are used to compensate for edge phase
errors. These segments may be lengthened or shortened by resynchronization.
These segments are programmable from 1 to 8 time quanta (TQ)

The nominal bit-time is the number of time quanta (TQ) per bit:

bit time=1TSEG1TSEG2
The configured value is always the effective value minus one:

cfg_tseg1 = TSEG1 – 1; cfg_tseg2 = TSEG2 – 1

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 25

Figure 7: Bit-timing configuration

C A N m o d u le - I I I D a ta s h e e t

Following restrictions need to be observed

 cfg_tseg1 = 0 and cfg_tseg1 = 1 are not allowed

 cfg_tseg2 = 0 is not allowed

 cfg_tseg2 = 1 may only be used in direct sampling mode

CAN B it-R ate
The time quantum TQ is derived from the system clock using the programmable bit-rate
prescaler:

TQ=
cfg _ bitrate1

f clk

The effective bit rate is

f bit rate=
1

TQ x bit time
=

f clk

cfg _ bitrate1 xbit time

Example: For a 1Mbps CAN system running at 16MHz, the bit timing parameters are:

cfg_tseg1 = 3; cfg_tseg2 = 2; cfg_bitrate = 1

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 26

C A N m o d u le - I I I D a ta s h e e t

Following restrictions need to be observed

 cfg_tseg1 = 0 and cfg_tseg1 = 1 are not allowed

 cfg_tseg2 = 0 is not allowed

 cfg_tseg2 = 1 may only be used in direct sampling mode

CAN B it-R ate
The time quantum TQ is derived from the system clock using the programmable bit-rate
prescaler:

TQ=
cfg _ bitrate1

f clk

The effective bit rate is

f bit rate=
1

TQ x bit time
=

f clk

cfg _ bitrate1 xbit time

Example: For a 1Mbps CAN system running at 16MHz, the bit timing parameters are:

cfg_tseg1 = 3; cfg_tseg2 = 2; cfg_bitrate = 1

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 26

C A N m o d u le - I I I D a ta s h e e t

3.2 .6 Tx Message Registers

Eight transmit message holding buffers are provided. An internal priority arbiter selects
the message according to the chosen arbitration scheme. Upon transmission of a
message or message arbitration loss, the priority arbiter re-evaluates the message
priority of the next message.

Message Arbitration
The priority arbiter supports round robin and fixed priority arbitration. The arbitration
mode is selected using the configuration register.

• Round Robin: Buffers are served in a defined order: 0-1-2..7-0-1... A particular buffer
is only selected if its TxReq flag is set. This scheme guarantees that all buffers
receive the same probability to send a message.

• Fixed Priority: Buffer 0 has the highest priority. This way it is possible to designate
buffer 0 as the buffer for error messages and it is guaranteed that they are sent first.

Note: RTR message requests are served before TxMessage buffers are handled. E.g.,
RTRreq0, ... RTRreq15, TxMessage0, TxMessage1, ... TxMessage7

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 27

Figure 8: Message Arbitration

ABP
Bus

Coupler

Priority
Arbiter

CAN
Framer

CANmodule-III

TxMessage0

CANbusABP Bus

TxMessage1

TxMessage7

RxMessage0
RxMessage1

RxMessage15

RTRreq

RTRreq

RTRreq

TxReq

TxReq

TxReq

C A N m o d u le - I I I D a ta s h e e t

3.2 .6 Tx Message Registers

Eight transmit message holding buffers are provided. An internal priority arbiter selects
the message according to the chosen arbitration scheme. Upon transmission of a
message or message arbitration loss, the priority arbiter re-evaluates the message
priority of the next message.

Message Arbitration
The priority arbiter supports round robin and fixed priority arbitration. The arbitration
mode is selected using the configuration register.

• Round Robin: Buffers are served in a defined order: 0-1-2..7-0-1... A particular buffer
is only selected if its TxReq flag is set. This scheme guarantees that all buffers
receive the same probability to send a message.

• Fixed Priority: Buffer 0 has the highest priority. This way it is possible to designate
buffer 0 as the buffer for error messages and it is guaranteed that they are sent first.

Note: RTR message requests are served before TxMessage buffers are handled. E.g.,
RTRreq0, ... RTRreq15, TxMessage0, TxMessage1, ... TxMessage7

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 27

Figure 8: Message Arbitration

ABP
Bus

Coupler

Priority
Arbiter

CAN
Framer

CANmodule-III

TxMessage0

CANbusABP Bus

TxMessage1

TxMessage7

RxMessage0
RxMessage1

RxMessage15

RTRreq

RTRreq

RTRreq

TxReq

TxReq

TxReq

C A N m o d u le - I I I D a ta s h e e t

Register Mapping Transmit Buffers
The register mapping of the transmit buffers is shown in the table below.

Address Name R/W Comment
0x020 TxMessage0.

Control
R/W TxMessage0 Buffer: Control Flags

[23]: WPNH, Write Protect Not High3

0: Bit [21:16] remain unchanged
1: Bit [21:16] are modified, default.

The readback value of this bit is undefined.

[21]: RTR, Remote Bit

0: This is a standard message
1: This is an RTR message

[20]: IDE, Extended Identifier Bit

0: This is a standard format message
1: This is an extended format message

[19:16]: DLC, Data Length Code

Invalid values are transmitted as they are, but the
number of data bytes is limited to eight.

0: Message has 0 data bytes
 1: Message has 1 data byte
 ...
 8: Message has 8 data bytes
 9-15: Message has 8 data bytes

[3]: WPNL: Write Protect Not Low.

0: Bit [2] remains unchanged
1: Bit [2] is modified, default.

This bit is always zero for readback

[2]: TxIntEbl, Tx Interrupt Enable

0: Interrupt disabled
1: Interrupt enabled, successful message transmission
 sets the TxMsg flag in the interrupt controller.

[1]: TxAbort, Transmit Abort Request

0: idle

1: Requests removal of a pending message. The
 message is removed the next time an arbitration loss
 happened. The flag is cleared when the message
 was removed or when the message won arbitration.
 The TxReq flag is released at the same time.

3 Using the WPN flag enables simple retransmission of the same message by only having

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 28

C A N m o d u le - I I I D a ta s h e e t

Register Mapping Transmit Buffers
The register mapping of the transmit buffers is shown in the table below.

Address Name R/W Comment
0x020 TxMessage0.

Control
R/W TxMessage0 Buffer: Control Flags

[23]: WPNH, Write Protect Not High3

0: Bit [21:16] remain unchanged
1: Bit [21:16] are modified, default.

The readback value of this bit is undefined.

[21]: RTR, Remote Bit

0: This is a standard message
1: This is an RTR message

[20]: IDE, Extended Identifier Bit

0: This is a standard format message
1: This is an extended format message

[19:16]: DLC, Data Length Code

Invalid values are transmitted as they are, but the
number of data bytes is limited to eight.

0: Message has 0 data bytes
 1: Message has 1 data byte
 ...
 8: Message has 8 data bytes
 9-15: Message has 8 data bytes

[3]: WPNL: Write Protect Not Low.

0: Bit [2] remains unchanged
1: Bit [2] is modified, default.

This bit is always zero for readback

[2]: TxIntEbl, Tx Interrupt Enable

0: Interrupt disabled
1: Interrupt enabled, successful message transmission
 sets the TxMsg flag in the interrupt controller.

[1]: TxAbort, Transmit Abort Request

0: idle

1: Requests removal of a pending message. The
 message is removed the next time an arbitration loss
 happened. The flag is cleared when the message
 was removed or when the message won arbitration.
 The TxReq flag is released at the same time.

3 Using the WPN flag enables simple retransmission of the same message by only having

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 28

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x020 TxMessage0.

Control

continued

R/W [0]: TxReq, Transmit Request (continued)

Write:
0: idle
1: Message Transmit Request4

Read:
0: TxReq completed
1: TxReq pending

0x024 TxMessage0. ID R/W TxMessage0 Buffer: Identifier

[31:3]: ID[28:0]
[2:0]: N/A

0x028 TxMessage0.
DataHigh

R/W TxMessage0 Buffer: Data high

The byte mapping can be set using the CAN swap_endian
configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 1

[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

swap_endian = 1:

[31:24]: CAN data byte 4

[23:16]: CAN data byte 3

[15:8]: CAN data byte 2

[7:0]: CAN data byte 1

to set the TRX flag without taking care of the special flags
4 The Tx message buffer must not be changed while TxReq is 1!

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 29

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x020 TxMessage0.

Control

continued

R/W [0]: TxReq, Transmit Request (continued)

Write:
0: idle
1: Message Transmit Request4

Read:
0: TxReq completed
1: TxReq pending

0x024 TxMessage0. ID R/W TxMessage0 Buffer: Identifier

[31:3]: ID[28:0]
[2:0]: N/A

0x028 TxMessage0.
DataHigh

R/W TxMessage0 Buffer: Data high

The byte mapping can be set using the CAN swap_endian
configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 1

[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

swap_endian = 1:

[31:24]: CAN data byte 4

[23:16]: CAN data byte 3

[15:8]: CAN data byte 2

[7:0]: CAN data byte 1

to set the TRX flag without taking care of the special flags
4 The Tx message buffer must not be changed while TxReq is 1!

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 29

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x02C TxMessage0.

DataLow
r/W TxMessage0 Buffer: Data low

The byte mapping can be set using the CAN swap_endian
configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 5

[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

swap_endian = 1:

[31:24]: CAN data byte 8

[23:16]: CAN data byte 7

[15:8]: CAN data byte 6

[7:0]: CAN data byte 5

0x030-
0x03C

TxMessage1 Buffer, see TxMessage0 Buffer for description

0x040-
0x04C

TxMessage2 Buffer, see TxMessage0 Buffer for description

0x050-
0x05C

TxMessage3 Buffer, see TxMessage0 Buffer for description

0x060-
0x06C

TxMessage4 Buffer, see TxMessage0 Buffer for description

0x070-
0x07C

TxMessage5 Buffer, see TxMessage0 Buffer for description

0x080-
0x08C

TxMessage6 Buffer, see TxMessage0 Buffer for description

0x090-
0x09C

TxMessage7 Buffer, see TxMessage0 Buffer for description

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 30

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x02C TxMessage0.

DataLow
r/W TxMessage0 Buffer: Data low

The byte mapping can be set using the CAN swap_endian
configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 5

[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

swap_endian = 1:

[31:24]: CAN data byte 8

[23:16]: CAN data byte 7

[15:8]: CAN data byte 6

[7:0]: CAN data byte 5

0x030-
0x03C

TxMessage1 Buffer, see TxMessage0 Buffer for description

0x040-
0x04C

TxMessage2 Buffer, see TxMessage0 Buffer for description

0x050-
0x05C

TxMessage3 Buffer, see TxMessage0 Buffer for description

0x060-
0x06C

TxMessage4 Buffer, see TxMessage0 Buffer for description

0x070-
0x07C

TxMessage5 Buffer, see TxMessage0 Buffer for description

0x080-
0x08C

TxMessage6 Buffer, see TxMessage0 Buffer for description

0x090-
0x09C

TxMessage7 Buffer, see TxMessage0 Buffer for description

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 30

C A N m o d u le - I I I D a ta s h e e t

Procedure for sending a message
• Write message into an empty transmit message holding buffer. An empty buffer is

indicated by TxReq is equal to zero.

• Request transmission by setting the respective TxReq flag to one.

• The TxReq flag remains set as long as the message transmit request is pending.
The content of the message buffer must not be changed while the TxReq flag is
set!

• The internal message priority arbiter selects the message according to the chosen
arbitration scheme

• Once the message was transmitted, the TxReq flag is set to zero and the TxMsg
interrupt status bit is asserted.

Procedure for removing a message from a transmit holding register
A message can be removed from a transmit holding buffer by asserting the TxAbort flag.
Use following procedure to remove the contents of a particular TxMessage buffer:

• Set TxAbort to one to request the message removal.

• This flag remains set as long as the message abort request is pending. It is
cleared when either the message won arbitration (TxMsg interrupt active) or the
message was removed (TxMsg interrupt inactive)

Single Shot Transmission (SST)
The single-shot transmission mode is used in systems where the retransmission of a
CAN message due to an arbitration loss or a bus error must be prevented.

A single-shot transmission request is set by asserting TxReq and TxAbort at the same
time. Upon a successful message transmission, both flags are cleared.

If an arbitration loss or a bus error happened during the transmission, the TxReq flag is
cleared, but the TxAbort flag remains asserted. At the same time, the sst_failure
interrupt is asserted.

An SST message can be aborted by setting the TxAbort=1 and TxReq=0.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 31

C A N m o d u le - I I I D a ta s h e e t

Procedure for sending a message
• Write message into an empty transmit message holding buffer. An empty buffer is

indicated by TxReq is equal to zero.

• Request transmission by setting the respective TxReq flag to one.

• The TxReq flag remains set as long as the message transmit request is pending.
The content of the message buffer must not be changed while the TxReq flag is
set!

• The internal message priority arbiter selects the message according to the chosen
arbitration scheme

• Once the message was transmitted, the TxReq flag is set to zero and the TxMsg
interrupt status bit is asserted.

Procedure for removing a message from a transmit holding register
A message can be removed from a transmit holding buffer by asserting the TxAbort flag.
Use following procedure to remove the contents of a particular TxMessage buffer:

• Set TxAbort to one to request the message removal.

• This flag remains set as long as the message abort request is pending. It is
cleared when either the message won arbitration (TxMsg interrupt active) or the
message was removed (TxMsg interrupt inactive)

Single Shot Transmission (SST)
The single-shot transmission mode is used in systems where the retransmission of a
CAN message due to an arbitration loss or a bus error must be prevented.

A single-shot transmission request is set by asserting TxReq and TxAbort at the same
time. Upon a successful message transmission, both flags are cleared.

If an arbitration loss or a bus error happened during the transmission, the TxReq flag is
cleared, but the TxAbort flag remains asserted. At the same time, the sst_failure
interrupt is asserted.

An SST message can be aborted by setting the TxAbort=1 and TxReq=0.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 31

C A N m o d u le - I I I D a ta s h e e t

3.2 .7 Rx Message Buffers

The CANmodule-III provides 16 individual receive message buffers. Each one has its
own message filter mask. Automatic reply to RTR messages is supported.

If a message is accepted in a receive buffer, its MsgAv flag is set. The message remains
valid as long as MsgAv flag is set. The host CPU has to reset the MsgAv flag to enable
receipt of a new message.

Rx Message Processing
After receipt of a new message, the RxMessageHandler searches all receive buffer
starting from RxMessage0 until it finds a valid buffer.

A valid buffer is indicated by:

• Receive buffer is enabled indicated by RxBufferEbl = 1

• Acceptance Filter of receive buffer matches incoming message

If the RxMessageHandler finds a valid buffer that is empty, then the message is stored
and the MsgAv flag of this buffer is set to ‘1’. If the RxIntEbl flag is set, than the RxMsg
flag of the interrupt controller is asserted. If the receive buffer already contains a
message indicated by MsgAv = 1 and the Link Flag is not set, then the RxMsgLoss
interrupt flag is asserted.

If an incoming message has its RTR flag set and the RTRreply flag of the matching
buffer is set, then the message is not stored but an RTR auto-reply request is issued.
See paragraph ‘RTR Auto-Reply’ for more details.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 32

Figure 9: Receive Message Handler

CANmodule-III

CANbus

RxMessage 0

CAN
Framer

RxMessage
Handler

RxMessage 1

RxMessage 2

RxMessage 15

1.

2.
3.

16.

C A N m o d u le - I I I D a ta s h e e t

3.2 .7 Rx Message Buffers

The CANmodule-III provides 16 individual receive message buffers. Each one has its
own message filter mask. Automatic reply to RTR messages is supported.

If a message is accepted in a receive buffer, its MsgAv flag is set. The message remains
valid as long as MsgAv flag is set. The host CPU has to reset the MsgAv flag to enable
receipt of a new message.

Rx Message Processing
After receipt of a new message, the RxMessageHandler searches all receive buffer
starting from RxMessage0 until it finds a valid buffer.

A valid buffer is indicated by:

• Receive buffer is enabled indicated by RxBufferEbl = 1

• Acceptance Filter of receive buffer matches incoming message

If the RxMessageHandler finds a valid buffer that is empty, then the message is stored
and the MsgAv flag of this buffer is set to ‘1’. If the RxIntEbl flag is set, than the RxMsg
flag of the interrupt controller is asserted. If the receive buffer already contains a
message indicated by MsgAv = 1 and the Link Flag is not set, then the RxMsgLoss
interrupt flag is asserted.

If an incoming message has its RTR flag set and the RTRreply flag of the matching
buffer is set, then the message is not stored but an RTR auto-reply request is issued.
See paragraph ‘RTR Auto-Reply’ for more details.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 32

Figure 9: Receive Message Handler

CANmodule-III

CANbus

RxMessage 0

CAN
Framer

RxMessage
Handler

RxMessage 1

RxMessage 2

RxMessage 15

1.

2.
3.

16.

C A N m o d u le - I I I D a ta s h e e t

Acceptance Filter
Each receive buffer has its own acceptance filter that is used to filter incoming
messages. An acceptance filter consists of Acceptance Mask Register (AMR) and
Acceptance Code Register (ACR) pair. The AMR defines which bits of the incoming CAN
message have to match the respective ACR bits.

Following message fields are covered:

• ID

• IDE

• RTR

• Data byte 1 and data byte 2 (DATA[63:56])5

The acceptance mask register (AMR) defines whether the incoming bit is checked
against the acceptance code register (ACR).

AMR: ‘0’: The incoming bit is checked against the respective ACR. The message
 is not accepted when the incoming bit doesn’t match respective ACR flag

 ‘1’: The incoming bit is don’t care

Example:
The following example shows the acceptance register settings used to support receipt of
a CANopen TPDO1 (Transmit Process Data Object) message. In CANopen, a widely
used CAN Higher Layer Protocol (HLP), the ID bits are used to select the message type.
The bit assignment is shown in following table:

CANopen Identifier
10 9 8 7 6 5 4 3 2 1 0
Function Code Node-ID

5 Some CAN High Level Protocols such as SDS or Device Net carry additional protocol related information
in the first or first two data bytes that are used for message acceptance and selection. Having the
capability to filter on these fields provides a more efficient implementation of the protocol stack running
on the CPU.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 33

C A N m o d u le - I I I D a ta s h e e t

Acceptance Filter
Each receive buffer has its own acceptance filter that is used to filter incoming
messages. An acceptance filter consists of Acceptance Mask Register (AMR) and
Acceptance Code Register (ACR) pair. The AMR defines which bits of the incoming CAN
message have to match the respective ACR bits.

Following message fields are covered:

• ID

• IDE

• RTR

• Data byte 1 and data byte 2 (DATA[63:56])5

The acceptance mask register (AMR) defines whether the incoming bit is checked
against the acceptance code register (ACR).

AMR: ‘0’: The incoming bit is checked against the respective ACR. The message
 is not accepted when the incoming bit doesn’t match respective ACR flag

 ‘1’: The incoming bit is don’t care

Example:
The following example shows the acceptance register settings used to support receipt of
a CANopen TPDO1 (Transmit Process Data Object) message. In CANopen, a widely
used CAN Higher Layer Protocol (HLP), the ID bits are used to select the message type.
The bit assignment is shown in following table:

CANopen Identifier
10 9 8 7 6 5 4 3 2 1 0
Function Code Node-ID

5 Some CAN High Level Protocols such as SDS or Device Net carry additional protocol related information
in the first or first two data bytes that are used for message acceptance and selection. Having the
capability to filter on these fields provides a more efficient implementation of the protocol stack running
on the CPU.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 33

C A N m o d u le - I I I D a ta s h e e t

Identifier fields:

• Function Code: The function code for a TDPO1 message is 3h

• Node-ID: In our example, we use 02h as the Node ID

• IDE = 0, CANopen uses the short format message

• RTR = 0, this is a regular message

To accept this message, the acceptance filter settings would look like

AMR settings:

• ID[28:18] = 0

• ID[17:0] = all ones

• IDE = 0

• RTR = 0

• DATA[63:56] = all ones

ACR settings:

• ID[28:18] = 182h

• ID[17:0] = don't care

• IDE = 0

• RTR = 0

• DATA[63:56] = don't care

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 34

C A N m o d u le - I I I D a ta s h e e t

Identifier fields:

• Function Code: The function code for a TDPO1 message is 3h

• Node-ID: In our example, we use 02h as the Node ID

• IDE = 0, CANopen uses the short format message

• RTR = 0, this is a regular message

To accept this message, the acceptance filter settings would look like

AMR settings:

• ID[28:18] = 0

• ID[17:0] = all ones

• IDE = 0

• RTR = 0

• DATA[63:56] = all ones

ACR settings:

• ID[28:18] = 182h

• ID[17:0] = don't care

• IDE = 0

• RTR = 0

• DATA[63:56] = don't care

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 34

C A N m o d u le - I I I D a ta s h e e t

RTR Auto-Reply

The CANmodule-III supports automatic answering of RTR message requests. All 16
receive buffers support this feature.

If an RTR message is accepted in a receive buffer where the RTRreply flag is set, then
this buffer automatically replies to this message with the content of this receive buffer.
The RTRreply_pending flag is set when the RTR message request is received. It is
cleared when the message was sent or when the message buffer is disabled. To abort a
pending RTRreply message, use the RTRabort command.

If the RTR auto-reply option is selected, the RTRsent flag is asserted when the RTR
auto-reply message was successfully sent. It is cleared by writing a 1 to it.

An RTR message interrupt is generated if the RTRsent flag and the RxIntEbl are set.
This interrupt is cleared by clearing the RTRsent flag.

RxBuffer Linking
Several receive buffers may be linked together to form a receive buffer array which acts
almost like a receive FIFO.

Requirements:

• All buffers of the same array must have the same message filter setting (AMR and
ACR are identical)

• The last buffer of an array may not have its link flag set

When a receive buffer already contains a message (MsgAv=1) and a new message
arrives for this buffer, then this message would be discarded (RxMsgLoss Interrupt). To
avoid this situation several receive buffers can be linked together. When the
CANmodule-III receives a new message, the RxMessage handler searches for a valid
receive buffer. If one is found that is already full (MsgAv=1) and the link flag is set
(BufferLink=1), the search for a valid receive buffer continues. If no other buffer is found,
than the RxMsgLoss interrupt is set and the message discarded.

It is possible to build several message arrays. Each of these arrays must use the same
AMR and ACR.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 35

C A N m o d u le - I I I D a ta s h e e t

RTR Auto-Reply

The CANmodule-III supports automatic answering of RTR message requests. All 16
receive buffers support this feature.

If an RTR message is accepted in a receive buffer where the RTRreply flag is set, then
this buffer automatically replies to this message with the content of this receive buffer.
The RTRreply_pending flag is set when the RTR message request is received. It is
cleared when the message was sent or when the message buffer is disabled. To abort a
pending RTRreply message, use the RTRabort command.

If the RTR auto-reply option is selected, the RTRsent flag is asserted when the RTR
auto-reply message was successfully sent. It is cleared by writing a 1 to it.

An RTR message interrupt is generated if the RTRsent flag and the RxIntEbl are set.
This interrupt is cleared by clearing the RTRsent flag.

RxBuffer Linking
Several receive buffers may be linked together to form a receive buffer array which acts
almost like a receive FIFO.

Requirements:

• All buffers of the same array must have the same message filter setting (AMR and
ACR are identical)

• The last buffer of an array may not have its link flag set

When a receive buffer already contains a message (MsgAv=1) and a new message
arrives for this buffer, then this message would be discarded (RxMsgLoss Interrupt). To
avoid this situation several receive buffers can be linked together. When the
CANmodule-III receives a new message, the RxMessage handler searches for a valid
receive buffer. If one is found that is already full (MsgAv=1) and the link flag is set
(BufferLink=1), the search for a valid receive buffer continues. If no other buffer is found,
than the RxMsgLoss interrupt is set and the message discarded.

It is possible to build several message arrays. Each of these arrays must use the same
AMR and ACR.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 35

C A N m o d u le - I I I D a ta s h e e t

Register Mapping Receive Buffers
The register mapping of the receive buffers is shown in the table below.

Address Name R/W Comment
0x0A0 RxMessage0.

Command
R/W RxMessage0: Control Flags

[23]: WPNH, Write Protect Not High

0: Bits [21:16] remain unchanged
1: Bits [21:16] are modified

The readback value of this bit is undefined.

[21]: RTR, Remote Bit

1: This is an RTR message
0: This is a regular message

[20]: IDE, Extended Identifier Bit

1: This is an extended format message
0: This is a standard format message

[19:16]: DLC, Data Length Code

0: Message has 0 data bytes
1: Message has 1 data byte
…
8: Message has 8 data bytes
9-15: Message has 8 data bytes

[7]: WPNL, Write Protect Not Low

0: Bits [6:3] remain unchanged
1: Bits [6:3] are modified

This bit is always zero for readback

[6]: Link Flag

0: This buffer is not linked to the next
1: This buffer is linked with next buffer

[5]: RxIntEbl, Receive Interrupt Enable

0: Interrupt generation is disabled
1: Interrupt generation is enabled

[4]: RTRreply, automatic message reply upon receipt
 of an RTR message

0: Automatic RTR message handling disabled
1: Automatic RTR message handling enabled

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 36

C A N m o d u le - I I I D a ta s h e e t

Register Mapping Receive Buffers
The register mapping of the receive buffers is shown in the table below.

Address Name R/W Comment
0x0A0 RxMessage0.

Command
R/W RxMessage0: Control Flags

[23]: WPNH, Write Protect Not High

0: Bits [21:16] remain unchanged
1: Bits [21:16] are modified

The readback value of this bit is undefined.

[21]: RTR, Remote Bit

1: This is an RTR message
0: This is a regular message

[20]: IDE, Extended Identifier Bit

1: This is an extended format message
0: This is a standard format message

[19:16]: DLC, Data Length Code

0: Message has 0 data bytes
1: Message has 1 data byte
…
8: Message has 8 data bytes
9-15: Message has 8 data bytes

[7]: WPNL, Write Protect Not Low

0: Bits [6:3] remain unchanged
1: Bits [6:3] are modified

This bit is always zero for readback

[6]: Link Flag

0: This buffer is not linked to the next
1: This buffer is linked with next buffer

[5]: RxIntEbl, Receive Interrupt Enable

0: Interrupt generation is disabled
1: Interrupt generation is enabled

[4]: RTRreply, automatic message reply upon receipt
 of an RTR message

0: Automatic RTR message handling disabled
1: Automatic RTR message handling enabled

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 36

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x0A0 RxMessage0.

Control

(continued)

R/W RxMessage0: Control (continued)

[3]: Buffer Enable

0: Buffer is disabled
1: Buffer is enabled

[2]: RTRabort, RTR Abort Request

0: Idle

1: Requests removal of a pending RTR message reply.
The flag is cleared when the message was removed
or when the message won arbitration. The TxReq
flag is released at the same time.

[1]: RTReply_pending

0: No RTR reply request pending
1: RTR reply request pending

[0]: MsgAv/RTRsent, Message Available/RTR sent

If RTRreply flag is set, this bit shows if an RTR auto-
reply message has been sent, otherwise it indicates if
the buffer contains a valid message.

Read:
0: idle
1: New message available (RTReply=0),
 RTR auto-reply message sent (RTRreply=1)

Write:
0: idle
1: Acknowledges receipt of new message or

 transmission of RTR auto-reply message 1

0x0A4 RxMessage0.
ID

R/W RxMessage: Identifier

[31:3]: ID[28:0]
[2:0]: zeros

1 Before acknowledging receipt of a new message, the message content must be copied into
system memory. Acknowledging a message clears the MsgAv flag.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 37

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x0A0 RxMessage0.

Control

(continued)

R/W RxMessage0: Control (continued)

[3]: Buffer Enable

0: Buffer is disabled
1: Buffer is enabled

[2]: RTRabort, RTR Abort Request

0: Idle

1: Requests removal of a pending RTR message reply.
The flag is cleared when the message was removed
or when the message won arbitration. The TxReq
flag is released at the same time.

[1]: RTReply_pending

0: No RTR reply request pending
1: RTR reply request pending

[0]: MsgAv/RTRsent, Message Available/RTR sent

If RTRreply flag is set, this bit shows if an RTR auto-
reply message has been sent, otherwise it indicates if
the buffer contains a valid message.

Read:
0: idle
1: New message available (RTReply=0),
 RTR auto-reply message sent (RTRreply=1)

Write:
0: idle
1: Acknowledges receipt of new message or

 transmission of RTR auto-reply message 1

0x0A4 RxMessage0.
ID

R/W RxMessage: Identifier

[31:3]: ID[28:0]
[2:0]: zeros

1 Before acknowledging receipt of a new message, the message content must be copied into
system memory. Acknowledging a message clears the MsgAv flag.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 37

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x0A8 RxMessage0.

DataHigh
R/W RxMessage Data high

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 1

[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

swap_endian = 1:

[31:24]: CAN data byte 4

[23:16]: CAN data byte 3

[15:8]: CAN data byte 2

[7:0]: CAN data byte 1

0x0AC RxMessage0.
DataLow

R/W RxMessage Data low

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 5

[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

swap_endian = 1:

[31:24]: CAN data byte 8

[23:16]: CAN data byte 7

[15:8]: CAN data byte 6

[7:0]: CAN data byte 5

0x0B0 RxMessage0.
AMR

R/W Acceptance Mask Register

[31:3]: Identifier
[2]: IDE
[1]: RTR
[0]: N/A

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 38

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x0A8 RxMessage0.

DataHigh
R/W RxMessage Data high

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 1

[23:16]: CAN data byte 2

[15:8]: CAN data byte 3

[7:0]: CAN data byte 4

swap_endian = 1:

[31:24]: CAN data byte 4

[23:16]: CAN data byte 3

[15:8]: CAN data byte 2

[7:0]: CAN data byte 1

0x0AC RxMessage0.
DataLow

R/W RxMessage Data low

The byte mapping can be set using the CAN
swap_endian configuration bit.

swap_endian = 0, default:

[31:24]: CAN data byte 5

[23:16]: CAN data byte 6

[15:8]: CAN data byte 7

[7:0]: CAN data byte 8

swap_endian = 1:

[31:24]: CAN data byte 8

[23:16]: CAN data byte 7

[15:8]: CAN data byte 6

[7:0]: CAN data byte 5

0x0B0 RxMessage0.
AMR

R/W Acceptance Mask Register

[31:3]: Identifier
[2]: IDE
[1]: RTR
[0]: N/A

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 38

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x0B4 RxMessage0.

ACR
R/W Acceptance Code Register

[31:3]: Identifier
[2]:IDE
[1]: RTR
[0]:N/A

0x0B8 RxMessage0.
AMR_Data

R/W Acceptance Mask Register – Data

[15:8]: CAN data byte 1

[7:0]: CAN data byte 2

0x0BC RxMessage0.
ACR_Data

R/W Acceptance Code Register – Data

[15:8]: CAN data byte 1

[7:0]: CAN data byte 2

0x0C0-
0x0DC

RxMessage1 Buffer, see RxMessage0 Buffer for description

0x0E0-
0x0FC

RxMessage2 Buffer, see RxMessage0 Buffer for description

0x100-
0x11C

RxMessage3 Buffer, see RxMessage0 Buffer for description

0x120-
0x13C

RxMessage4 Buffer, see RxMessage0 Buffer for description

0x140-
0x15C

RxMessage5 Buffer, see RxMessage0 Buffer for description

0x160-
0x17C

RxMessage6 Buffer, see RxMessage0 Buffer for description

0x180-
019C

RxMessage7 Buffer, see RxMessage0 Buffer for description

0x1A0-
0x1BC

RxMessage8 Buffer, see RxMessage0 Buffer for description

0x1C0-
0x1DC

RxMessage9 Buffer, see RxMessage0 Buffer for description

0x1E0-
0x1FC

RxMessage10 Buffer, see RxMessage0 Buffer for description

0x200-
0x21C

RxMessage11 Buffer, see RxMessage0 Buffer for description

0x220-
0x23C

RxMessage12 Buffer, see RxMessage0 Buffer for description

0x240-
0x25C

RxMessage13 Buffer, see RxMessage0 Buffer for description

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 39

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x0B4 RxMessage0.

ACR
R/W Acceptance Code Register

[31:3]: Identifier
[2]:IDE
[1]: RTR
[0]:N/A

0x0B8 RxMessage0.
AMR_Data

R/W Acceptance Mask Register – Data

[15:8]: CAN data byte 1

[7:0]: CAN data byte 2

0x0BC RxMessage0.
ACR_Data

R/W Acceptance Code Register – Data

[15:8]: CAN data byte 1

[7:0]: CAN data byte 2

0x0C0-
0x0DC

RxMessage1 Buffer, see RxMessage0 Buffer for description

0x0E0-
0x0FC

RxMessage2 Buffer, see RxMessage0 Buffer for description

0x100-
0x11C

RxMessage3 Buffer, see RxMessage0 Buffer for description

0x120-
0x13C

RxMessage4 Buffer, see RxMessage0 Buffer for description

0x140-
0x15C

RxMessage5 Buffer, see RxMessage0 Buffer for description

0x160-
0x17C

RxMessage6 Buffer, see RxMessage0 Buffer for description

0x180-
019C

RxMessage7 Buffer, see RxMessage0 Buffer for description

0x1A0-
0x1BC

RxMessage8 Buffer, see RxMessage0 Buffer for description

0x1C0-
0x1DC

RxMessage9 Buffer, see RxMessage0 Buffer for description

0x1E0-
0x1FC

RxMessage10 Buffer, see RxMessage0 Buffer for description

0x200-
0x21C

RxMessage11 Buffer, see RxMessage0 Buffer for description

0x220-
0x23C

RxMessage12 Buffer, see RxMessage0 Buffer for description

0x240-
0x25C

RxMessage13 Buffer, see RxMessage0 Buffer for description

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 39

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x260-
0x27C

RxMessage14 Buffer, see RxMessage0 Buffer for description

0x280-
0x29C

RxMessage15 Buffer, see RxMessage0 Buffer for description

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 40

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x260-
0x27C

RxMessage14 Buffer, see RxMessage0 Buffer for description

0x280-
0x29C

RxMessage15 Buffer, see RxMessage0 Buffer for description

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 40

C A N m o d u le - I I I D a ta s h e e t

3.3 Error Capture Register

The CANmodule-III core contains a dedicated error capture register that can be used to
perform additional CAN bus diagnostics.

Two different modes of operation are supported:

• Free running mode
In free-running mode, the ECR displays the field and bit position within the
current CAN frame.

• Error capture mode
In error capture mode, the ECR samples the field and bit position when a CAN
error is detected. In order to sample such an event, the ECR needs to be armed
by performing a write access to it. When armed, the ECR only captures one error
event. For successive error captures, the ECR needs to be armed again.

Address Name R/W Comment
0x018 ECR R Error capture register

[16:12]: Field

0x00: Stopped
0x01: Synchronize
0x05: Interframe
0x06: Bus idle
0x07: Start of frame
0x08: Arbitration
0x09: Control
0x0A: Data
0x0B: CRC
0x0C: ACK
0x0D: End of frame
0x10: Error flag
0x11: Error echo
0x12: Error delimiter
0x18: Overload flag
0x19: Overload echo
0x1A: Overload delimiter
Others: n/a

[11:6]: Bit number

Bit number inside of Field

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 41

C A N m o d u le - I I I D a ta s h e e t

3.3 Error Capture Register

The CANmodule-III core contains a dedicated error capture register that can be used to
perform additional CAN bus diagnostics.

Two different modes of operation are supported:

• Free running mode
In free-running mode, the ECR displays the field and bit position within the
current CAN frame.

• Error capture mode
In error capture mode, the ECR samples the field and bit position when a CAN
error is detected. In order to sample such an event, the ECR needs to be armed
by performing a write access to it. When armed, the ECR only captures one error
event. For successive error captures, the ECR needs to be armed again.

Address Name R/W Comment
0x018 ECR R Error capture register

[16:12]: Field

0x00: Stopped
0x01: Synchronize
0x05: Interframe
0x06: Bus idle
0x07: Start of frame
0x08: Arbitration
0x09: Control
0x0A: Data
0x0B: CRC
0x0C: ACK
0x0D: End of frame
0x10: Error flag
0x11: Error echo
0x12: Error delimiter
0x18: Overload flag
0x19: Overload echo
0x1A: Overload delimiter
Others: n/a

[11:6]: Bit number

Bit number inside of Field

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 41

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x018 ECR

continued

R Error Capture Register (continued)

[5]: Tx mode

When asserted, the CAN controller is transmitter

[4]: Rx mode

When asserted, the CAN controller is receiver

[3:1]: Error type

0: Arbitration loss
1: Bit error
2: Bit stuffing error
3: Acknowledge error
4: Form error
5: CRC error
Others: n/a

[0]: Status

0: ECR register captured an error or is in free running
mode.

1: ECR register is armed

W Arm Error Capture Register

When in error capture mode, writing to the ECR register
will arm the error capture register. This means that the
error type and position is captured upon detection of a
CAN error.

Once an error is captured, the register will hold the value
until it is armed again.

Figure 10 shows the bit mapping reported by the Error Capture Register. Please note
that the IDE bit in the standard frame is reported as bit 12 of the Arbitration field instead
of bit 0 of the Control field.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 42

C A N m o d u le - I I I D a ta s h e e t

Address Name R/W Comment
0x018 ECR

continued

R Error Capture Register (continued)

[5]: Tx mode

When asserted, the CAN controller is transmitter

[4]: Rx mode

When asserted, the CAN controller is receiver

[3:1]: Error type

0: Arbitration loss
1: Bit error
2: Bit stuffing error
3: Acknowledge error
4: Form error
5: CRC error
Others: n/a

[0]: Status

0: ECR register captured an error or is in free running
mode.

1: ECR register is armed

W Arm Error Capture Register

When in error capture mode, writing to the ECR register
will arm the error capture register. This means that the
error type and position is captured upon detection of a
CAN error.

Once an error is captured, the register will hold the value
until it is armed again.

Figure 10 shows the bit mapping reported by the Error Capture Register. Please note
that the IDE bit in the standard frame is reported as bit 12 of the Arbitration field instead
of bit 0 of the Control field.

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 42

C A N m o d u le - I I I D a ta s h e e t

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 43

Figure 10: ECR CAN Frame Bit Mapping

C A N m o d u le - I I I D a ta s h e e t

Copyright © 2002-2019, Inicore Inc. Programmer's Model - Page 43

Figure 10: ECR CAN Frame Bit Mapping

C A N m o d u le - I I I D a ta s h e e t

4 A p p lic a tio n N o te s

4.1 Automatic b itrate detection

Using the CAN controller's listen-only mode, non intrusive bus observation can be used
to determine the actual bitrate. During the bitrate detection, the CAN controller will listen
to the on-going CAN bus communication using a set of given bitrates and eventually will
detect the actual bitrate.

The procedure to detect the bitrate is shown in following flowchart:

Copyright © 2002-2019, Inicore Inc. Application Notes - Page 44

Figure 11: Automatic bitrate detection flowchart

C A N m o d u le - I I I D a ta s h e e t

4 A p p lic a tio n N o te s

4.1 Automatic b itrate detection

Using the CAN controller's listen-only mode, non intrusive bus observation can be used
to determine the actual bitrate. During the bitrate detection, the CAN controller will listen
to the on-going CAN bus communication using a set of given bitrates and eventually will
detect the actual bitrate.

The procedure to detect the bitrate is shown in following flowchart:

Copyright © 2002-2019, Inicore Inc. Application Notes - Page 44

Figure 11: Automatic bitrate detection flowchart

C A N m o d u le - I I I D a ta s h e e t

About Inicore

 FPGA and ASIC Design

 Easy-to-use IP Cores

 System-on-Chip Solutions

 Consulting Services

 ASIC to FPGA Migration

 Obsolete ASIC Replacements

Inicore is an experienced system design house providing FPGA / ASIC and SoC design
services. The company's expertise in architecture, intellectual property, methodology and
tool handling provides a complete design environment that helps customers shorten their
design cycle and speed time to market. Our offering covers feasibility study, concept
analysis, architecture definition, code generation and implementation. When ready, we
deliver you a FPGA or take your design to an ASIC provider, whatever is more suitable
for your unique solution.

Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module
solution. Our experience and fast turnaround time reduces your development costs and
increases your returns from the market. Your system is not limited by the level of
expertise and standard chip solutions you happen to have in-house. Achieve market
success by differentiating and optimizing your product. Reusability builds the basis for
further developments in the ever-decreasing product life cycle.

Visit us @ www.inicore.com

INICORE INC. has made every attempt to ensure that the information in this document is accurate and complete.
However, INICORE INC. assumes no responsibility for any errors, omissions, or for any consequences resulting from the
information included in this document or the equipment it accompanies. INICORE INC. reserves the right to make
changes in its products and specifications at any time without notice.

Copyright © 2002-2019 INICORE INC. All rights reserved.

Copyright © 2002-2019, Inicore Inc. Application Notes - Page 45

C A N m o d u le - I I I D a ta s h e e t

About Inicore

 FPGA and ASIC Design

 Easy-to-use IP Cores

 System-on-Chip Solutions

 Consulting Services

 ASIC to FPGA Migration

 Obsolete ASIC Replacements

Inicore is an experienced system design house providing FPGA / ASIC and SoC design
services. The company's expertise in architecture, intellectual property, methodology and
tool handling provides a complete design environment that helps customers shorten their
design cycle and speed time to market. Our offering covers feasibility study, concept
analysis, architecture definition, code generation and implementation. When ready, we
deliver you a FPGA or take your design to an ASIC provider, whatever is more suitable
for your unique solution.

Customer Advantages
We offer one-stop shopping for everything from the specifications to the chip or module
solution. Our experience and fast turnaround time reduces your development costs and
increases your returns from the market. Your system is not limited by the level of
expertise and standard chip solutions you happen to have in-house. Achieve market
success by differentiating and optimizing your product. Reusability builds the basis for
further developments in the ever-decreasing product life cycle.

Visit us @ www.inicore.com

INICORE INC. has made every attempt to ensure that the information in this document is accurate and complete.
However, INICORE INC. assumes no responsibility for any errors, omissions, or for any consequences resulting from the
information included in this document or the equipment it accompanies. INICORE INC. reserves the right to make
changes in its products and specifications at any time without notice.

Copyright © 2002-2019 INICORE INC. All rights reserved.

Copyright © 2002-2019, Inicore Inc. Application Notes - Page 45

	1 Overview
	1.1 Features
	1.2 Block Diagram

	2 IO Description
	2.1 Inputs – Outputs
	2.2 General Inputs
	2.3 APB Bus Interface
	2.4 CAN Bus Interface
	2.5 SRAM Port

	3 Programmer's Model
	3.1 Memory map of all internal registers
	3.2 Internal Register Description
	3.2.1 Interrupt Controller
	Interrupt Generation

	3.2.2 Buffer Status Indicators
	3.2.3 Error Status Indicators
	3.2.4 Operating Modes
	Test modes overview
	SRAM Test Mode

	3.2.5 CAN Configuration Register
	CAN Bit-Timing Configuration
	CAN Bit-Rate

	3.2.6 Tx Message Registers
	3.2.7 Rx Message Buffers

	3.3 Error Capture Register

	4 Application Notes
	4.1 Automatic bitrate detection

